
Copyright © 2019 HCL Products & Platforms | www.hcltech.comPRODUCTS & PLATFORMS Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

What’s New in HCL RTist 11.1
updated for release 2021.46

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

2

Overview

 RTist 11.1 is based on Eclipse 2020.06 (4.16)

 HCL RTist is 100% compatible with IBM RSARTE. All features
in IBM RSARTE are also present in HCL RTist. However, HCL RTist
contains some features that do not exist in IBM RSARTE.

▪ Those features are marked in this presentation by

http://www.hcltechsw.com/

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

3

Eclipse 4.16 (2020.06)

 Compared to RTist 11.0, RTist 11.1 includes new features from 4 quarterly Eclipse releases:

▪ 2019.09 (https://www.eclipse.org/eclipse/news/4.13/platform.php)

▪ 2019.12 (https://www.eclipse.org/eclipse/news/4.14/platform.php)

▪ 2020.03 (https://www.eclipse.org/eclipse/news/4.15/platform.php)

▪ 2020.06 (https://www.eclipse.org/eclipse/news/4.16/platform.php)

 For full information about all improvements and changes in these Eclipse releases see the links above

▪ Some highlights are listed in the next few slides...

http://www.hcltechsw.com/
https://www.eclipse.org/eclipse/news/4.13/platform.php
https://www.eclipse.org/eclipse/news/4.14/platform.php
https://www.eclipse.org/eclipse/news/4.15/platform.php
https://www.eclipse.org/eclipse/news/4.16/platform.php

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

4

Eclipse 4.16 (2020.06)

 A new Quick Search dialog allows you to search the files of your workspace faster (“as-you-type”)

▪ For a similar search experience in model files, use the Find Named Element command instead

http://www.hcltechsw.com/

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

5

Eclipse 4.16 (2020.06)

 By default at most 99 editors can now be open at the same time

▪ Helps keeping the performance good when working with Eclipse for a long time

▪ This can be controlled by the preference General – Editors – Close editors automatically

 Showing key bindings when performing commands

▪ New preferences in General – Keys

▪ This is a good way to learn about key bindings for the commands that are used, and can also help in presentations

http://www.hcltechsw.com/

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

6

Eclipse 4.16 (2020.06)

 Quick Access field replaced with toolbar button

▪ Takes less space in the toolbar, and instead uses a normal dialog for typing an showing the
results

▪ Same key binding as before (Ctrl + 3) but the command is now called “Find Actions”

▪ The results now also include matching files in the workspace, and text matches in files (requires that Quick Search
has been used at least once)

http://www.hcltechsw.com/

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

7

Eclipse 4.16 (2020.06)

 Show code problems inline

▪ Makes errors/warnings more visible and lets you apply quick fixes
without having to go to the Problems view

▪ Enable this feature in preferences at General – Editors – Text Editors –
Show code minings for problem annotations

 There were several improvements in SWT and GTK

▪ The minimal supported GTK version is now 3.20

http://www.hcltechsw.com/

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

8

CDT 9.11 (included as part of Eclipse 2020.06)

 New Debug Sources view

▪ Shows source files the C++ debugger knows about when debugging an application

▪ Useful in particular when the application contains source files that are not present in the Eclipse workspace

▪ Source files can be found by searching (filtering) and opened by double-click

http://www.hcltechsw.com/

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

9

CDT 9.11 (included as part of Eclipse 2020.06)

 CODAN improvements

▪ Several additional checks implemented

 For more information about CDT improvements see
https://wiki.eclipse.org/CDT/User/NewIn99
https://wiki.eclipse.org/CDT/User/NewIn910
https://wiki.eclipse.org/CDT/User/NewIn911

http://www.hcltechsw.com/
https://wiki.eclipse.org/CDT/User/NewIn99
https://wiki.eclipse.org/CDT/User/NewIn910
https://wiki.eclipse.org/CDT/User/NewIn911

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

10

Newer EGit Version in the EGit Integration

 The EGit integration in RTist has upgraded EGit from 5.4 to 5.8

▪ This is the recommended and latest version for Eclipse 2020.06

 This upgrade provides several new features, performance improvements and bug fixes

▪ For detailed information about the changes see
https://wiki.eclipse.org/EGit/New_and_Noteworthy/5.5
https://wiki.eclipse.org/EGit/New_and_Noteworthy/5.6
https://wiki.eclipse.org/EGit/New_and_Noteworthy/5.7
https://wiki.eclipse.org/EGit/New_and_Noteworthy/5.8

http://www.hcltechsw.com/
https://wiki.eclipse.org/EGit/New_and_Noteworthy/5.5
https://wiki.eclipse.org/EGit/New_and_Noteworthy/5.6
https://wiki.eclipse.org/EGit/New_and_Noteworthy/5.7
https://wiki.eclipse.org/EGit/New_and_Noteworthy/5.8

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

11

Installation Script

 A bash script is now available which helps automating the installation of RTist

▪ Download it from the Info Center

▪ Works on both Windows and Linux

 In particular useful for installing RTist 11.1 (due to the requirement of using Java 11 for the installation)

▪ Choose whether you want to then run RTist with either Java 8 or Java 11

 For documentation on how to configure and use the script see the Info Center.

http://www.hcltechsw.com/
https://rtist.hcldoc.com/help/topic/com.ibm.xtools.rsarte.webdoc/Utilities/Install Product.html
https://rtist.hcldoc.com/help/topic/com.ibm.xtools.rsarte.webdoc/Utilities/Install Product.html

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

12

Properties View Improvements

 The Default Value field now supports
multi-line values

▪ To create a multi-line default value you
still need to use the Code View or Code
Editor

▪ For editing a multi-line default value you
can now use the Properties view, but it’s
still often more convenient with the Code
View or Code Editor

▪ For quickly viewing a multi-line default value the Properties view can be handy

http://www.hcltechsw.com/

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

13

Redefining Non-Virtual Operations

 When redefining a non-virtual operation in the UI, a warning
dialog now appears

 By default the dialog suggests to make the inherited operation
virtual, so the model (and generated C++) will become correct

http://www.hcltechsw.com/

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

14

Project Explorer Improvements

 The Project Explorer can now show template information after the name of an element that has
template parameters

▪ Makes it easier to see if an element is a template without having to expand it in the Project Explorer, or look in
the Properties view

▪ A new preference RealTime Development – Project Explorer –
Show Template Parameters in Labels controls what to show

Do not show
template parameters

Show existance of
template parameters

Show full template
parameter list

http://www.hcltechsw.com/

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

15

Copy/Paste of Transitions in the Project Explorer

 You can now copy a transition and paste it on a target state using the Project Explorer

▪ More convenient than creating a new transition and then copy/paste the effect and guard code (and possibly
other transition properties) separately

▪ Works for transitions in both capsule and passive class state machines

▪ The pasted transition will initially become a self-transition and can be rerouted later if needed

 If ports or trigger operations referenced by triggers of the copied transition are not available in the
target context, a dialog will inform that such triggers will be deleted

copy/
paste

http://www.hcltechsw.com/

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

16

Automatic Creation of Fragment Files

 A new preference was added for automatically
creating fragment files for newly created model
elements

▪ Modeling – Automatically create fragment files

 Setting this preference can be useful if you prefer to always create fully fragmented models

 Note that

▪ for state machines no fragment files will be automatically created,

▪ fragment file creation cannot be undone,

▪ fragment files are not automatically renamed when you rename the element stored in it (use the command
Refactor – Rename file if you want to rename the fragment file)

http://www.hcltechsw.com/

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

17

Search Filtering

 It’s now possible to filter search results using Boolean operators NOT (!) and AND (&&)

▪ Useful if a search returns too many matches

▪ Use a filter on the form
!A && !B && ... !X to hide matches where certain words are
not present

▪ Use a filter on the form
A && B && ... X to only show matches where certain words are
present

▪ ...or any combination, where some words are present and others not

 Enclose the filter string in double quotes to apply the filter verbatimly

▪ Needed if the filter string contains the characters ! or &&

http://www.hcltechsw.com/

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

18

Enums with Operations

 Enumerations can now have operations

▪ Create them as usual with Add UML - Operation

 Such operations will be translated to global functions

▪ C++ enums cannot have member functions, but it’s sometimes
useful to have functions that operate on or return enum literals

▪ Using global functions can then be an alternative to wrapping
the enum inside a class

 This works the same both for scoped and non-scoped enumerations

http://www.hcltechsw.com/

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

19

Generic Type Descriptors

 The model compiler now supports generating type descriptors for type aliases with template parameters

▪ For example: template<typename T, unsigned int N > using StdArray = std::array<T, N>;

▪ If type descriptor functions are defined for the type alias, they will be generated as template functions with the
same template parameters

▪ Allows to implement generic type descriptors that work for all (or many) instantiations of the template

▪ A new RTObject_class::fromType<T>() template function can be used for looking up the type descriptor of
a type at compile time. Useful for example when implementing generic encode or decode functions. Specialize it
for the types that you use (specializations for built-in types are available in the TargetRTS). For example:
template <> inline const RTObject_class* RTObject_class::fromType<RTString>() {

return &RTType_RTString;
}

 You can specify a unique name for the type descriptor of a specific template instantiation

▪ For example: template <> const char* RTName_StdArray<StdString, 4>::name = "StdArray<StdString, 4>";

▪ The TargetRTS now prints a warning if two type descriptors with the same name exists. Helps troubleshooting
missing template specializations for the name attribute.

http://www.hcltechsw.com/

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

20

Custom Capsule Constructors

 It’s now possible to
create custom
constructors for capsules

 Each capsule constructor has two mandatory parameters:

▪ rtg_rts Controller (i.e. thread) that will run the created capsule instance

▪ rtg_ref Capsule part where the created capsule instance will be inserted

 In addition you can add any number of user-defined parameters

 This feature makes it possible to pass initialization data to a
capsule instance already when it’s created

▪ Previously this could only be done by sending such data with the initialization event (which is not possible for
fixed capsule parts)

▪ Custom capsule constructors work for all capsules regardless of the capsule part they are incarnated into

http://www.hcltechsw.com/

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

21

Capsule Factories (1/2)

 The concept of a capsule factory was introduced to allow incarnating capsules with custom constructors

▪ Specifies how a capsule instance is created and destroyed

▪ Can be provided in various ways (in a hierarchical manner)

 New capsule factory code snippets for capsule parts

▪ All capsule instances incarnated in that capsule part will use the specified Create/Destroy code

 New capsule factory property for capsule parts

▪ Will be used if no Create/Destroy code is provided for that capsule part

 New capsule factory property in the TC

▪ Will be used if none of the above are provided

▪ Allows specifying a default (global) capsule factory

▪ A variable $(CAPSULE_CLASS) can be used in this TC property
(expands to the name of the class that is generated from the type of the capsule part)

http://www.hcltechsw.com/

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

22

Capsule Factories (2/2)

 For optional capsule parts, it’s also possible to provide the capsule factory using a new TargetRTS
function RTFrame::incarnateCustom()

▪ In this case, only the Create code can be provided (the regular
delete operator will be used for destroying such capsule instances)

▪ Example usage:

 If multiple capsule factories are provided, they will be picked in this priority order:

1. The capsule factory provided in a call to RTFrame::incarnateCustom()

2. The capsule factory specified by means of Create and/or Destroy code snippets on a capsule part

3. The capsule factory specified by the ”Capsule Factory” property on a capsule part

4. The capsule factory specified in the ”Capsule Factory” property on the TC

RTActorId id = frame.incarnateCustom(part1,
RTActorFactory([this](RTController * c, RTActorRef * a, int index) {

return new A_Actor(c, a, 444); // User-defined constructor
})
);

http://www.hcltechsw.com/

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

23

Dependency Injection

 A capsule normally depends on many things at run-time for its execution

▪ Examples: Other capsules typing its capsule parts, the thread that will run the capsule, initialization data to pass to the capsule
constructor, etc.

 Spreading out such dependencies in a hard-coded way in an application can make it hard to change
them to configure different variants of an application

▪ E.g. mocking out dependent capsules when unit testing a capsule

 The TargetRTS now provides a new dependency injection service realized by the RTInjector class

▪ Register the dependencies to configure the application (typically early, e.g. in the top capsule constructor)

▪ A create function can be registered for a capsule part (identified by
its qualified path name)

▪ A capsule factory can delegate to RTInjector::create() for
creating capsule instances

▪ If necessary, registered dependencies can be changed at run-time

http://www.hcltechsw.com/

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

24

Moving Event Data (1/2)

 The data of an event can now be moved instead of copied when sent between two capsules

MyClass mc;
thePort.theEvent(mc).send(); // Send by copy
thePort.theEvent(std::move(mc)).send(); // Send by move

 This requires that the event data type is movable, which can be accomplished

▪ by having a move constructor, and/or

▪ by having a move function defined in the type descriptor

 The move function is a new type descriptor function (describing how to move data from a source to a target object)

▪ If the target object has a move constructor, a typical
implementation is to invoke it (the model compiler
can automatically generate such an implementation)

▪ Contrary to other type descriptor functions, the move
function is optional (you only need to implement it if
the type needs to be movable)

▪ If no move function is defined, and an attempt is made
to move an object, it will instead be copied

http://www.hcltechsw.com/

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

25

Moving Event Data (2/2)

 You can also move the data from a received message into, for example, a capsule attribute

someAttr = std::move(*rtdata); // Avoid copying the message data object

 This requires that rtdata is declared as non-const (so

the move constructor or move assignment operator will be invoked)

▪ Can be accomplished by a new transition property

 Moving instead of copying event data can improve application performance if

▪ the data object is big, and/or

▪ the data object is sent many times

~35% faster

http://www.hcltechsw.com/

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

26

Code Compliance

 A new preference was introduced to let the model compiler
generate code according to certain code compliance rules

 Support for these Clang-Tidy rules are implemented:

▪ cppcoreguidelines-pro-type-static-cast-downcast
Suppress warnings for use of static_cast to downcast
event data in transition functions

transition2_t1(static_cast< const bool * > (msg->data), static_cast< P::Base * > (msg->sap()
/* NOLINT(cppcoreguidelines-pro-type-static-cast-downcast) */));

▪ misc-unused-parameters
Suppress warnings for named function parameters that are not used in the function body

static void rtg_B_init(const RTObject_class * type /* NOLINT(misc-unused-parameters) */, B * target);

▪ bugprone-sizeof-expression
Suppress warnings for computing the size of a pointer type using sizeof

, sizeof(SomeClassPtr) /* NOLINT(bugprone-sizeof-expression) */

http://www.hcltechsw.com/

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

27

Error Message when Failing to Delete Files or Folders

 Certain commands in RTist involve deletion of files and/or folders

▪ Cleaning a TC

▪ Removing code preview

▪ ...etc

 Now, if the required files or
folders cannot be deleted, a
clear error message is shown

▪ Previously there would be a
silent failure in such situations
which could be hard to
understand the reason for

▪ The new message is identical to what Eclipse would show if you directly try to remove the files/folders from the
Project Explorer. Click the Details button to see exactly which file or folder that couldn’t be deleted, and why.

http://www.hcltechsw.com/

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

28

More Flexible Model References in Transformation Configurations

 A TC references model elements by means of URIs (e.g. list of source elements, top capsule etc)

 Such URIs can now be relative, and use qualified names instead of unique IDs to identify the element

▪ Makes it easier to reuse a TC (e.g. by copy/paste) in different projects

 New preferences control how new URIs will created:
RealTime Development – Transformation Configuration Editor – Model References

http://www.hcltechsw.com/

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

29

Support for Path Variables in Transformation Configurations

 Path variables can now be used in certain TC properties

▪ Useful for those TC properties that specify a path

▪ Define path variables in Preferences at General – Workspace –
Linked Resources

▪ This can be an alternative to using string substitutions (Run/Debug –
String Substitutions) or environment variables in order to have a more
generic TC (a path variable takes precedence over other kinds of
variables, if the same variable name is used).

 The model compiler now prints a warning if a variable used in a TC
property cannot be resolved

WARNING : Cannot resolve variable '$(TARGET_DIR)' in
'Location' property:'$(TARGET_DIR)'

http://www.hcltechsw.com/

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

30

New TargetRTS Flag for Faster Plugin Capsule Part Imports

 When importing a capsule instance into a plugin capsule part a run-time check
RTActor::isReferencedBy() is performed to ensure there are no cycles in the reference graph

 This run-time check can sometimes take too much time

 The TargetRTS now provides a new compile flag RTIMPORT_ISREFERENCEDBY_CHECK for disabling this
run-time check

▪ Set it to 0 in RTLibSet.h or RTTarget.h to disable the check

http://www.hcltechsw.com/

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

31

Unit Testing of Capsules using the Mocha Framework (1/3)

 Mocha is a popular JavaScript framework for testing asynchronous applications

 It’s now possible to use Mocha also for unit testing capsules

▪ Provided by a new component that can be selected when installing

▪ Note that it depends on NodePlus

 To create a Mocha unit test for a capsule, invoke the new context menu command Add Unit Test

http://www.hcltechsw.com/
https://mochajs.org/

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

32

Unit Testing of Capsules using the Mocha Framework (2/3)

 The Add Unit Test command creates everything necessary for writing a unit test for the capsule

▪ A test driver model where all service
ports of the capsule under test (”cut”)
are connected to similar but conjugated
ports of a test probe capsule

▪ A TC for building the test driver
model into an executable that uses
the TcpServer library for exposing
all test probe ports to the Mocha
test script

▪ A Node.js project with a Mocha test
script ready to implement the unit test

http://www.hcltechsw.com/

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

33

Unit Testing of Capsules using the Mocha Framework (3/3)

 The unit test can be executed right away

▪ Build the test driver TC (only needed the first time, and

whenever you change the capsule under test)

▪ Install the Node.js dependencies for the JavaScript project
(right-click on the project and do Run As – npm install
(only needed the first time – it is assume you already have installed Mocha
on the machine)

▪ Run the testcase by right-click on the .js file and do
Run As – JavaScript Unit Test

 The test execution result is shown in the JavaScript Unit Test view

http://www.hcltechsw.com/

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

34

Reporting with BIRT

 Create reports that include information from an RTist model

▪ Same capabilities as in RTist 10.3, but now adapted for recent Eclipse versions (supports RTist 11.0 and RTist 11.1)

▪ Delivered as a separate update site on our InfoCenter. Installation instructions are included in the ZIP file.

▪ This is currently an experimental feature

http://www.hcltechsw.com/
https://rtist.hcldoc.com/help/topic/com.ibm.xtools.rsarte.webdoc/Articles/Integrations/BIRT Integration (v11.0 only).html?cp=27_2_8_0

Copyright © 2021 HCL Technologies Limited | www.hcltechsw.com

35

Java API Improvements

 A new method for programmatically redefining an inherited operation was added

▪ com.ibm.xtools.uml.redefinition.RedefFactory.getOperationRedefinition()

 Read more about this new method in the Help (RTist Java APIs – Reference – API Reference – UML Modeling Layer)

http://www.hcltechsw.com/

$7 BILLION ENTERPRISE | 110,000 IDEAPRENEURS | 31 COUNTRIES

https://www.youtube.com/watch?v=JzfmzTcVUJg

