
Copyright © 2019 HCL Products & Platforms | www.hcltech.comPRODUCTS & PLATFORMS Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

What’s New in HCL RTist 11.1
updated for release 2022.21

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

2

Overview

 RTist 11.1 is based on Eclipse 2020.06 (4.16)

 HCL RTist is 100% compatible with IBM RSARTE. All features
in IBM RSARTE are also present in HCL RTist. However, HCL RTist
contains some features that do not exist in IBM RSARTE.

▪ Those features are marked in this presentation by

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

3

Eclipse 4.16 (2020.06)

 Compared to RTist 11.0, RTist 11.1 includes new features from 4 quarterly Eclipse releases:

▪ 2019.09 (https://www.eclipse.org/eclipse/news/4.13/platform.php)

▪ 2019.12 (https://www.eclipse.org/eclipse/news/4.14/platform.php)

▪ 2020.03 (https://www.eclipse.org/eclipse/news/4.15/platform.php)

▪ 2020.06 (https://www.eclipse.org/eclipse/news/4.16/platform.php)

 For full information about all improvements and changes in these Eclipse releases see the links above

▪ Some highlights are listed in the next few slides...

http://www.hcltechsw.com/
https://www.eclipse.org/eclipse/news/4.13/platform.php
https://www.eclipse.org/eclipse/news/4.14/platform.php
https://www.eclipse.org/eclipse/news/4.15/platform.php
https://www.eclipse.org/eclipse/news/4.16/platform.php

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

4

Eclipse 4.16 (2020.06)

 A new Quick Search dialog allows you to search the files of your workspace faster (“as-you-type”)

▪ For a similar search experience in model files, use the Find Named Element command instead

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

5

Eclipse 4.16 (2020.06)

 By default at most 99 editors can now be open at the same time

▪ Helps keeping the performance good when working with Eclipse for a long time

▪ This can be controlled by the preference General – Editors – Close editors automatically

 Showing key bindings when performing commands

▪ New preferences in General – Keys

▪ This is a good way to learn about key bindings for the commands that are used, and can also help in presentations

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

6

Eclipse 4.16 (2020.06)

 Quick Access field replaced with toolbar button

▪ Takes less space in the toolbar, and instead uses a normal dialog for typing an showing the
results

▪ Same key binding as before (Ctrl + 3) but the command is now called “Find Actions”

▪ The results now also include matching files in the workspace, and text matches in files (requires that Quick Search
has been used at least once)

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

7

Eclipse 4.16 (2020.06)

 Show code problems inline

▪ Makes errors/warnings more visible and lets you apply quick fixes
without having to go to the Problems view

▪ Enable this feature in preferences at General – Editors – Text Editors –
Show code minings for problem annotations

 There were several improvements in SWT and GTK

▪ The minimal supported GTK version is now 3.20

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

8

CDT 9.11 (included as part of Eclipse 2020.06)

 New Debug Sources view

▪ Shows source files the C++ debugger knows about when debugging an application

▪ Useful in particular when the application contains source files that are not present in the Eclipse workspace

▪ Source files can be found by searching (filtering) and opened by double-click

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

9

CDT 9.11 (included as part of Eclipse 2020.06)

 CODAN improvements

▪ Several additional checks implemented

 For more information about CDT improvements see
https://wiki.eclipse.org/CDT/User/NewIn99
https://wiki.eclipse.org/CDT/User/NewIn910
https://wiki.eclipse.org/CDT/User/NewIn911

http://www.hcltechsw.com/
https://wiki.eclipse.org/CDT/User/NewIn99
https://wiki.eclipse.org/CDT/User/NewIn910
https://wiki.eclipse.org/CDT/User/NewIn911

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

10

Newer EGit Version in the EGit Integration

 The EGit integration in RTist has upgraded EGit from 5.4 to 5.8

▪ This is the recommended and latest version for Eclipse 2020.06

 This upgrade provides several new features, performance improvements and bug fixes

▪ For detailed information about the changes see
https://wiki.eclipse.org/EGit/New_and_Noteworthy/5.5
https://wiki.eclipse.org/EGit/New_and_Noteworthy/5.6
https://wiki.eclipse.org/EGit/New_and_Noteworthy/5.7
https://wiki.eclipse.org/EGit/New_and_Noteworthy/5.8

http://www.hcltechsw.com/
https://wiki.eclipse.org/EGit/New_and_Noteworthy/5.5
https://wiki.eclipse.org/EGit/New_and_Noteworthy/5.6
https://wiki.eclipse.org/EGit/New_and_Noteworthy/5.7
https://wiki.eclipse.org/EGit/New_and_Noteworthy/5.8

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

11

Installation Script

 A bash script is now available which helps automating the installation of RTist

▪ Download it from the Info Center

▪ Works on both Windows and Linux

 In particular useful for installing RTist 11.1 (due to the requirement of using Java 11 for the installation)

▪ Choose whether you want to then run RTist with either Java 8 or Java 11

 For documentation on how to configure and use the script see the Info Center.

http://www.hcltechsw.com/
https://rtist.hcldoc.com/help/topic/com.ibm.xtools.rsarte.webdoc/Utilities/Install Product.html
https://rtist.hcldoc.com/help/topic/com.ibm.xtools.rsarte.webdoc/Utilities/Install Product.html

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

12

Improved Inheritance Explorer

 The Inheritance Explorer is now easier to open

▪ A new Explore Inheritance command is available in the context menu for elements that can be inherited

▪ A new keyboard shortcut has been assigned: Alt + Shift + Q , I

 Both super types (direct and indirect) and sub types (only
direct) are now shown initially

▪ No longer necessary to manually expand the element to see the sub types

 Support for navigating from Inheritance Explorer to generated C++ code

 Interfaces are now supported in the same way as other types

 Improved the Members view

▪ For a capsule, its ports, states and transitions can now be shown

▪ Possible to only see the redefinitions (e.g. useful to understand how an inherited
capsule or class has been modified)

▪ Improved sorting of members according to different criteria

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

13

Properties View Improvements

 The Default Value field now supports
multi-line values

▪ To create a multi-line default value you
still need to use the Code View or Code
Editor

▪ For editing a multi-line default value you
can now use the Properties view, but it’s
still often more convenient with the Code
View or Code Editor

▪ For quickly viewing a multi-line default value the Properties view can be handy

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

14

Brace Initialization

 For newly created attributes, brace initialization will be selected by default

▪ But only if using C++ 11 as code standard

▪ Existing attributes are not affected by this change

 The Project Explorer now shows if an attribute uses brace initialization, or some other form of
initialization

 When you create a new attribute, and C++ 11 is used, you can now choose if you want to use brace
or equal syntax for initialization by directly typing in the Project Explorer

▪ When the code standard is older than C++ 11, only the equal syntax is available, and it will map to constructor
intialization as before

Brace initialization

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

15

Redefining Non-Virtual Operations

 When redefining a non-virtual operation in the UI, a warning
dialog now appears

 By default the dialog suggests to make the inherited operation
virtual, so the model (and generated C++) will become correct

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

16

Improvements related to Abstract Classes and Pure Virtual Operations (1/2)

 Previously it was necessary to mark a class (or capsule) as Abstract for the model compiler to treat it like an
abstract class

▪ A warning would be printed for non-abstract classes containing pure virtual operations
14:08:08 : WARNING : HelloWorld::AbstractClass::pv_func : This operation cannot be pure-virtual because the owning classifier is not abstract.

 Now the model compiler automatically treats classes with pure virtual operations as abstract

 The Properties View implements the same condition

▪ If a class (or capsule) is not marked as
abstract, but has pure virtual or interface
operations (locally defined or inherited), the
Abstract checkbox is automatically set (and
made read-only)

▪ A tooltip explains why the class (or capsule) is
considered abstract (useful in case it’s abstract because you forgot to redefine or implement an operation)

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

17

Improvements related to Abstract Classes and Pure Virtual Operations (2/2)

 Note that automatic computation of the Abstract property is based on comparing the signature of
operations. If operations in the inheritance hierarchy have parameters with inconsistent use of types (e.g.
mixed use of regular types, typedefs, type aliases or macros) then the automatic computation may fail.

 A new preference RealTime Development – Build/Transformations – C++ – Automatically compute if a
class or capsule is abstract controls if the Abstract property should be automatically computed (by default
it’s not)

▪ Note that this preference applies both for code generation and the Properties view

 The Project Explorer and diagrams now show all abstract classes
and pure virtual operations in italics

 Also, pure virtual operations now have ”= 0” appended to their signatures

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

18

Project Explorer Improvements

 The Project Explorer can now show template information after the name of an element that has
template parameters

▪ Makes it easier to see if an element is a template without having to expand it in the Project Explorer, or look in
the Properties view

▪ A new preference RealTime Development – Project Explorer –
Show Template Parameters in Labels controls what to show

Do not show
template parameters

Show existance of
template parameters

Show full template
parameter list

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

19

Copy/Paste of Transitions in the Project Explorer

 You can now copy a transition and paste it on a target state using the Project Explorer

▪ More convenient than creating a new transition and then copy/paste the effect and guard code (and possibly
other transition properties) separately

▪ Works for transitions in both capsule and passive class state machines

▪ The pasted transition will initially become a self-transition and can be rerouted later if needed

 If ports or trigger operations referenced by triggers of the copied transition are not available in the
target context, a dialog will inform that such triggers will be deleted

copy/
paste

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

20

Automatic Creation of Fragment Files

 A new preference was added for automatically
creating fragment files for newly created model
elements

▪ Modeling – Automatically create fragment files

 Setting this preference can be useful if you prefer to always create fully fragmented models

 Note that

▪ for state machines no fragment files will be automatically created

▪ fragment file creation cannot be undone

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

21

Automatic Rename of Model Files

 A new checkbox was added in the Rename
dialog, for automatically renaming the model
file when its root element is renamed
(triggered by the Refactor – Rename command)

 Helps ensure consistency between model
element names and model file names

▪ Note that like other refactorings, the file renaming
is not undoable

▪ Remember to use Refactor – Rename (as opposed
to just renaming the element) if you want the model file name to update too

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

22

Search Filtering

 It’s now possible to filter search results using Boolean operators NOT (!) and AND (&&)

▪ Useful if a search returns too many matches

▪ Use a filter on the form
!A && !B && ... !X to hide matches where certain words are
not present

▪ Use a filter on the form
A && B && ... X to only show matches where certain words are
present

▪ ...or any combination, where some words are present and others not

 Enclose the filter string in double quotes to apply the filter verbatimly

▪ Needed if the filter string contains the characters ! or &&

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

23

Enums with Operations

 Enumerations can now have operations

▪ Create them as usual with Add UML - Operation

 Such operations will be translated to global functions

▪ C++ enums cannot have member functions, but it’s sometimes
useful to have functions that operate on or return enum literals

▪ Using global functions can then be an alternative to wrapping
the enum inside a class

 This works the same both for scoped and non-scoped enumerations

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

24

Generic Type Descriptors

 The model compiler now supports generating type descriptors for type aliases with template parameters

▪ For example: template<typename T, unsigned int N > using StdArray = std::array<T, N>;

▪ If type descriptor functions are defined for the type alias, they will be generated as template functions with the
same template parameters

▪ Allows to implement generic type descriptors that work for all (or many) instantiations of the template

▪ A new RTObject_class::fromType<T>() template function can be used for looking up the type descriptor of
a type at compile time. Useful for example when implementing generic encode or decode functions. Specialize it
for the types that you use (specializations for built-in types are available in the TargetRTS). For example:
template <> inline const RTObject_class* RTObject_class::fromType<RTString>() {

return &RTType_RTString;
}

 You can specify a unique name for the type descriptor of a specific template instantiation

▪ For example: template <> const char* RTName_StdArray<StdString, 4>::name = "StdArray<StdString, 4>";

▪ The TargetRTS now prints a warning if two type descriptors with the same name exists. Helps troubleshooting
missing template specializations for the name attribute.

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

25

Custom Capsule Constructors

 It’s now possible to
create custom
constructors for capsules

 Each capsule constructor has two mandatory parameters:

▪ rtg_rts Controller (i.e. thread) that will run the created capsule instance

▪ rtg_ref Capsule part where the created capsule instance will be inserted

 In addition you can add any number of user-defined parameters

 This feature makes it possible to pass initialization data to a
capsule instance already when it’s created

▪ Previously this could only be done by sending such data with the initialization event (which is not possible for
fixed capsule parts)

▪ Custom capsule constructors work for all capsules regardless of the capsule part they are incarnated into

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

26

Capsule Factories (1/2)

 The concept of a capsule factory was introduced to allow incarnating capsules with custom constructors

▪ Specifies how a capsule instance is created and destroyed

▪ Can be provided in various ways (in a hierarchical manner)

 New capsule factory code snippets for capsule parts

▪ All capsule instances incarnated in that capsule part will use the specified Create/Destroy code

 New capsule factory property for capsule parts

▪ Will be used if no Create/Destroy code is provided for that capsule part

 New capsule factory property in the TC

▪ Will be used if none of the above are provided

▪ Allows specifying a default (global) capsule factory

▪ A variable $(CAPSULE_CLASS) can be used in this TC property
(expands to the name of the class that is generated from the type of the capsule part)

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

27

Capsule Factories (2/2)

 For optional capsule parts, it’s also possible to provide the capsule factory using a new TargetRTS
function RTFrame::incarnateCustom()

▪ In this case, only the Create code can be provided (the regular
delete operator will be used for destroying such capsule instances)

▪ Example usage:

 If multiple capsule factories are provided, they will be picked in this priority order:

1. The capsule factory provided in a call to RTFrame::incarnateCustom()

2. The capsule factory specified by means of Create and/or Destroy code snippets on a capsule part

3. The capsule factory specified by the ”Capsule Factory” property on a capsule part

4. The capsule factory specified in the ”Capsule Factory” property on the TC

RTActorId id = frame.incarnateCustom(part1,
RTActorFactory([this](RTController * c, RTActorRef * a, int index) {

return new A_Actor(c, a, 444); // User-defined constructor
})
);

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

28

Dependency Injection

 A capsule normally depends on many things at run-time for its execution

▪ Examples: Other capsules typing its capsule parts, the thread that will run the capsule, initialization data to pass to the capsule
constructor, etc.

 Spreading out such dependencies in a hard-coded way in an application can make it hard to change
them to configure different variants of an application

▪ E.g. mocking out dependent capsules when unit testing a capsule

 The TargetRTS now provides a new dependency injection service realized by the RTInjector class

▪ Register the dependencies to configure the application (typically early, e.g. in the top capsule constructor)

▪ A create function can be registered for a capsule part (identified by
its qualified path name)

▪ A capsule factory can delegate to RTInjector::create() for
creating capsule instances

▪ If necessary, registered dependencies can be changed at run-time

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

29

Moving Event Data (1/2)

 The data of an event can now be moved instead of copied when sent between two capsules

MyClass mc;
thePort.theEvent(mc).send(); // Send by copy
thePort.theEvent(std::move(mc)).send(); // Send by move

 This requires that the event data type is movable, which can be accomplished

▪ by having a move constructor, and/or

▪ by having a move function defined in the type descriptor

 The move function is a new type descriptor function (describing how to move data from a source to a target object)

▪ If the target object has a move constructor, a typical
implementation is to invoke it (the model compiler
can automatically generate such an implementation)

▪ Contrary to other type descriptor functions, the move
function is optional (you only need to implement it if
the type needs to be movable)

▪ If no move function is defined, and an attempt is made
to move an object, it will instead be copied

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

30

Moving Event Data (2/2)

 You can also move the data from a received message into, for example, a capsule attribute

someAttr = std::move(*rtdata); // Avoid copying the message data object

 This requires that rtdata is declared as non-const (so

the move constructor or move assignment operator will be invoked)

▪ Can be accomplished by a new transition property

 Moving instead of copying event data can improve application performance if

▪ the data object is big, and/or

▪ the data object is sent many times

~35% faster

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

31

Creation of Assignment Operators

 It’s now easier to create assignment operators for a class

▪ Use new commands in context menu Add UML – Special Operation

 Both Move and Copy assignment operators can be created

copy assignment operator

move assignment operator

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

32

More C++ Language Standards

 The preference RealTime Development – Build/Transformations – C++ –
C++ Code Standard can now be set to more C++ language standards

 The corresponding model compiler argument --codeStandard was extended too

 The default language standard is now set to C++ 17

▪ Matches the compilers used for building the precompiled versions of the TargetRTS

 Explicitly setting which language standard to use makes it possible for the model compiler to issue a
warning if a C++ language construct is used that is not supported in the selected language version

 It is now possible to also set the C++ language standard in the TC

▪ Makes it possible to override the C++ language standard specified in the
workspace when building a certain TC

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

33

Marking Elements as Deprecated

 Many elements can now be marked as deprecated using new widgets in the C++ General property tab

▪ Optionally, a deprecation message can also be provided (for example to suggest an alternative element to use
instead)

 A deprecated element is allowed to be used, but its usage is discouraged

▪ The C++ compiler will print the deprecation message if it detects that the deprecated element is used

 This feature requires C++ 14 or later

▪ If the C++ Code Standard preference is older than C++ 14, the model compiler will print a warning

../DerivedCap.cpp:36:14: warning: 'void DerivedCap_Actor::resizeFields()' is deprecated: Deprecated since version 2.19, use recomputeFields() instead [-
Wdeprecated-declarations]
resizeFields();

10:01:25 : WARNING : CPPModel::DerivedCap::resizeFields : Marking an element as deprecated requires C++ 14 or later.

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

34

Marking Elements as Nodiscard

 Operations and types (operation return types) can now be marked as nodiscard using new widgets in the
C++ General property tab

▪ Optionally, a message can also be provided

 If the C++ compiler detects that a nodiscard operation returns a value that is discarded by the caller, it will
print a message (either a predefined message, or the custom message specified)

 This feature requires C++ 17 or later (C++ 20 if a custom message is provided)

▪ If the C++ Code Standard specifies a too old code standard, the model compiler will print a warning

..\HelloWorld.cpp(30): warning C4858: discarding return value: Don't ignore the returned status

14:42:09 : WARNING : HelloWorld::Status : Marking an element as nodiscard requires C++ 17 or later.

14:46:20 : WARNING : HelloWorld::Status : Marking an element as nodiscard with a message requires C++ 20.

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

35

Code Compliance

 A new preference was introduced to let the model compiler
generate code according to certain code compliance rules

 Support for these Clang-Tidy rules are implemented:

▪ cppcoreguidelines-pro-type-static-cast-downcast
Suppress warnings for use of static_cast to downcast
event data in transition functions

transition2_t1(static_cast< const bool * > (msg->data), static_cast< P::Base * > (msg->sap()
/* NOLINT(cppcoreguidelines-pro-type-static-cast-downcast) */));

▪ misc-unused-parameters
Suppress warnings for named function parameters that are not used in the function body

static void rtg_B_init(const RTObject_class * type /* NOLINT(misc-unused-parameters) */, B * target);

▪ bugprone-sizeof-expression
Suppress warnings for computing the size of a pointer type using sizeof

, sizeof(SomeClassPtr) /* NOLINT(bugprone-sizeof-expression) */

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

36

Error Message when Failing to Delete Files or Folders

 Certain commands in RTist involve deletion of files and/or folders

▪ Cleaning a TC

▪ Removing code preview

▪ ...etc

 Now, if the required files or
folders cannot be deleted, a
clear error message is shown

▪ Previously there would be a
silent failure in such situations
which could be hard to
understand the reason for

▪ The new message is identical to what Eclipse would show if you directly try to remove the files/folders from the
Project Explorer. Click the Details button to see exactly which file or folder that couldn’t be deleted, and why.

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

37

More Flexible Model References in Transformation Configurations

 A TC references model elements by means of URIs (e.g. list of source elements, top capsule etc)

 Such URIs can now be relative, and use qualified names instead of unique IDs to identify the element

▪ Makes it easier to reuse a TC (e.g. by copy/paste) in different projects

 New preferences control how new URIs will created:
RealTime Development – Transformation Configuration Editor – Model References

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

38

Support for Path Variables in Transformation Configurations

 Path variables can now be used in certain TC properties

▪ Useful for those TC properties that specify a path

▪ Define path variables in Preferences at General – Workspace –
Linked Resources

▪ This can be an alternative to using string substitutions (Run/Debug –
String Substitutions) or environment variables in order to have a more
generic TC (a path variable takes precedence over other kinds of
variables, if the same variable name is used).

 The model compiler now prints a warning if a variable used in a TC
property cannot be resolved

WARNING : Cannot resolve variable '$(TARGET_DIR)' in
'Location' property:'$(TARGET_DIR)'

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

39

Using std::chrono Library Types when Setting Timers

 The TargetRTS was updated to allow timers to be set using types from the std::chrono library

▪ New overloads of Timing::Base functions informAt, informIn and informEvery

 Makes it easier to integrate with other code using std::chrono for time management

 No need to always specify fractions of seconds in nanoseconds (as with RTTimespec)

Example: Setting a timer to expire in 2.5 seconds

timer.informIn(RTTimespec(2, 500000000));Using RTTimespec (the only option previously)

timer.informIn(std::chrono::milliseconds(2500));Using std::chrono::milliseconds

timer.informIn(2500ms);Using operator""ms (requires C++ 14)

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

40

New TargetRTS Flag for Faster Plugin Capsule Part Imports

 When importing a capsule instance into a plugin capsule part a run-time check
RTActor::isReferencedBy() is performed to ensure there are no cycles in the reference graph

 This run-time check can sometimes take too much time

 The TargetRTS now provides a new compile flag RTIMPORT_ISREFERENCEDBY_CHECK for disabling this
run-time check

▪ Set it to 0 in RTLibSet.h or RTTarget.h to disable the check

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

41

Named Event Enumerations in Generated Code

 Previously the enums generated for protocol classes were anonymous

 Now they are named ”RTInEvents” and ”RTOutEvents” respectively

▪ Makes it possible to reference them from other code

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

42

Configurable Line Endings for CDATA Sections

 It’s now possible to control which kind of line breaks to be used
when saving model files containing CDATA sections

▪ A new preference was added: Modeling – Line breaks in CDATA

 By default, any line break is accepted. If you want to ensure consistent line breaks in all CDATA sections,
use one of the other three options

▪ Windows-style (CR+LF)

▪ Linux-style (LF)

▪ Same as in model file (read the first line break from the model file and use that in CDATA sections in that file)

 Having consistent line endings in CDATA sections can simplify textual comparison of model files

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

43

Unit Testing of Capsules using the Mocha Framework (1/3)

 Mocha is a popular JavaScript framework for testing asynchronous applications

 It’s now possible to use Mocha also for unit testing capsules

▪ Provided by a new component that can
be selected when installing

▪ This feature integrates with NodePlus if it
also is installed. However, it can also be
used with any other JavaScript
development environment.

 To create a Mocha unit test for a capsule, invoke the new context menu command Add Unit Test

http://www.hcltechsw.com/
https://mochajs.org/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

44

Unit Testing of Capsules using the Mocha Framework (2/3)

 The Add Unit Test command creates everything necessary for writing a unit test for the capsule

▪ A test driver model where all service
ports of the capsule under test (”cut”)
are connected to similar but conjugated
ports of a test probe capsule

▪ A TC for building the test driver
model into an executable that uses
the TcpServer library for exposing
all test probe ports to the Mocha
test script

▪ A Node.js project with a Mocha test
script ready to implement the unit test
(only generated if NodePlus is available)

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

45

Unit Testing of Capsules using the Mocha Framework (3/3)

 The unit test can be executed right away

▪ Build the test driver TC (only needed the first time, and

whenever you change the capsule under test)

▪ Then use your JavaScript IDE to run and debug the test.
With NodePlus the steps are:

• Install the Node.js dependencies for the JavaScript
project by right-clicking on the project and do
Run As – npm install.
(This is only needed the first time. It is assumed you already have installed Mocha on the machine.)

• Run the testcase by right-clicking on the testcase .js file and do Run As – JavaScript Unit Test

• If needed you can debug the unit test using Debug As – JavaScript Unit Test

• The test execution result is shown in the
JavaScript Unit Test view

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

46

Reporting with BIRT

 Create reports that include information from an RTist model

▪ Same capabilities as in RTist 10.3, but now adapted for recent Eclipse versions (supports RTist 11.0 and RTist 11.1)

▪ Delivered as a separate update site on our InfoCenter. Installation instructions are included in the ZIP file.

http://www.hcltechsw.com/
https://rtist.hcldoc.com/help/topic/com.ibm.xtools.rsarte.webdoc/Articles/Integrations/BIRT Integration.html?cp=27_2_8_0

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

47

Java API Improvements

 A new method for programmatically redefining an inherited operation was added

▪ com.ibm.xtools.uml.redefinition.RedefFactory.getOperationRedefinition()

 Read more about this new method in the Help (RTist Java APIs – Reference – API Reference – UML Modeling Layer)

http://www.hcltechsw.com/

Copyright © 2022 HCL Technologies Limited | www.hcltechsw.com

48

UML RT SDK Sample

 The sample was updated with two new commands showing how to redefine states and operations using
existing and new Java APIs

▪ Also shows how to create generalizations programmatically

http://www.hcltechsw.com/

$7 BILLION ENTERPRISE | 110,000 IDEAPRENEURS | 31 COUNTRIES

https://www.youtube.com/watch?v=JzfmzTcVUJg

