
Building C++ Applications with

DevOps Model RealTime

Author: Mattias Mohlin
Senior Software Architect

HCL

BUILDING C++ APPLICATIONS WITH...1

DEVOPS MODEL REALTIME..1

INTRODUCTION...3

TRANSFORMATION CONFIGURATIONS...3

TRANSFORMATION CONFIGURATION PROPERTIES...5
Main tab...5
References tab..6
Code Generation tab..7
Target Configuration tab...10
Threads tab..13
Code tab...13

DYNAMIC PROPERTIES IN TRANSFORMATION CONFIGURATIONS...15
Pre-defined Variables..15
User-defined Variables..16
JavaScript Expressions..17

MODEL ELEMENT REFERENCES IN TRANSFORMATION CONFIGURATIONS...17
CREATING TRANSFORMATION CONFIGURATIONS..18
TRANSFORMATION CONFIGURATION INHERITANCE...19
PREREQUISITE TRANSFORMATION CONFIGURATIONS..21
ACTIVE TRANSFORMATION CONFIGURATIONS...21
MANAGING THE SOURCES OF A TRANSFORMATION CONFIGURATION..21

Organize Sources...22
Detect Source Dependencies Automatically..23
Context Sensitive Library Builds...24
Automated Source Management and External Code...25

BUILDING GENERATED CODE..26

MAKEFILE GENERATION...27

INTERACTIVE BUILD...28

BUILD MESSAGES...29
BUILDING MULTIPLE TRANSFORMATION CONFIGURATIONS...31

1

ALTERNATIVE WAYS TO TRIGGER AN INTERACTIVE BUILD..31

BATCH BUILD...32

PERL CONFIGURATION...32

MODEL COMPILER VALIDATION RULES...33

BUILD VARIANTS...33

BUILD VARIANT AND TRANSFORMATION CONFIGURATION FRAMEWORK APIS..38
DEBUGGING BUILD VARIANT SCRIPTS..38

EXTERNAL LIBRARIES..38

PRECOMPILED LIBRARIES..40
EXTERNAL CONSTANTS..42

Defining External Constants Programmatically...43

CLEAN...43

CODE PREVIEW...45

USING CODE PREVIEW FOR CODE COMPARISON..46
GENERATING CODE PREVIEW FOR A TRANSFORMATION CONFIGURATION..47
REMOVING CODE PREVIEW..48

This document describes the steps involved when building a real-time C++ application from a
UML-RT model in DevOps Model RealTime.

Readers of this document are assumed to have read the document "Modeling Real-Time
Applications in Model RealTime".

The document was last updated for Model RealTime 12.0.1. All screen shots were captured on
the Windows platform.

2

Introduction
One of the most important capabilities of Model RealTime is the ability to transform a UML
model into an executable real-time application. This process, which we refer to as "building
the model", typically consists of the following steps:

1. A subset of the model is transformed to C++ code.
2. An Eclipse CDT project and a makefile is generated.
3. A make tool is launched to build the generated code using the makefile.
4. Messages (such as compilation errors) that are produced during the build are captured

and printed.

There are two ways of building a model; interactive build from within the Model RealTime
user interface, and batch build from command line or scripts1. In both cases the build is done
in the same way, by performing the steps mentioned above. The differences between
interactive and batch builds are more related to how the build is triggered, and what happens
after the build is done. For example, in an interactive build most build messages are printed to
the UML Development Console while in a batch build they are typically printed to the
command line console or written to a log file.

The utility in Model RealTime which builds a model is called the model compiler. This is a
stand-alone command line tool which runs as a separate application outside of the Model
RealTime IDE. It can therefore be used for true batch builds that run without any dependency
on the Model RealTime IDE. It can also be used for interactive builds from within the IDE. In
that case Model RealTime will launch the model compiler for generating the code and a make
file, and then generated code is built by make.

If your system supports parallel execution of make rules it’s also possible to generate a single
make file from Model RealTime that also contains rules that invoke the model compiler for
the code generation. This means that the entire build can be driven by a single make file. Even
if this could boost build performance by parallelizing the generation of C++ files, it also
means that the model compiler will be invoked multiple times, which involves some
overhead. You have to measure the performance on your system to decide if this approach is
worthwhile or not. Also note that this feature is currently only available in batch builds.

In the following chapters we will go through different aspects that are related to building an
Model RealTime C++ model with the model compiler.

Transformation Configurations
The transformation of a model to compiled code can be done in many ways, and is controlled
by several properties. Examples of such properties include

 what subset of the model should be built
 how should the generated C++ code be compiled
 which target configuration of the RT services library should be used
 etc.

1 A third way is to trigger a build programmatically from a plugin using available APIs. These APIs are not
covered in this document.

3

All such properties that are used in a build are stored in a transformation configuration (or
TC for short), which needs to be specified when starting the build. A TC is a text file in
JavaScript format (with the file extension .tcjs). Using JavaScript for defining build properties
has many advantages. For example, it allows for dynamic properties where the value is not a
static value but computed by JavaScript code. It is also a readable format that is easy to edit
with any kind of text editor. There are good editors for JavaScript available for Eclipse that
can be installed on top of Model RealTime. However, if you don’t plan to use powerful
JavaScript constructs in your TC files, you can use the TC editor that is included in Model
RealTime. This is an editor that groups TC properties in logical tabs and allows you to view
and edit the properties in graphical forms. However, it also provides a Code tab where you
can see the JavaScript representation of all properties that have been set.

By default TC files are not shown in the Project Explorer, and instead TCs are shown under a
virtual folder called "Transformation Configurations". To make the actual TC files visible you
have to click on the view menu in the Project Explorer, and select “Filters and
Customization”. Turn off the filter called "Transformation Configuration Files":

4

Note that in the “Content” tab it is also possible to hide or show the virtual folder
"Transformation Configurations".

Transformation Configuration Properties
If you double-click on a TC file the transformation configuration editor will open. This editor
lets you edit all the properties that are stored in the TC. The editor uses several tabs to group
related properties. In this chapter we go through the TC properties as they appear in the TC
editor.

Main tab
This tab contains the main properties that must be set-up for all kinds of TCs.

Artifact type specifies if generated C++ code should be compiled into an executable (default)
or a library. There is also the choice of external library, which makes it possible to represent
an external C++ library by means of a TC. This is useful in order to integrate the building of
external code with building the model. See External Libraries for more information.

A special kind of executable TC is the “C++ Test Executable”. It works in the same way as a
regular executable except that it does not specify a top capsule. This kind of TC is useful in
order to build executables which run unit tests of model elements.

Note that some TC properties are only relevant for one particular artifact type. For example, a
top capsule can only be specified for C++ executables.

Environment is usually set to "TargetRTS". However, if none of the generated C++ files will
depend on anything from the RT services library you may instead set it to "Standalone". In
that case the application will not link with the TargetRTS library and hence be smaller.

Sources specify which elements that will be transformed to C++ when building the TC.
Elements that are contained in a specified source element will also be transformed. It can be

5

convenient to specify a single top-level package as the only source element. Thereby the TC
does not have to be updated when new elements are added to the package. However, this
approach also means that some elements may be unnecessarily transformed and compiled, if
the package contains elements that do not need to be translated to C++. This will increase the
time it takes to build the TC. See Managing the Sources of a Transformation Configuration
for more information about different ways in which you can manage the list of source
elements for a TC.

The Target properties specify the name and location of an Eclipse CDT project to which
generated C++ files will be written. This project can either be created and updated when the
TC is built, or you may use an existing project which you maintain manually. In the latter case
the properties on the “Target Configuration” tab are not used, and corresponding properties
from the target CDT project is used instead for building generated code. Note that if you go
for the latter approach you do not have all build properties located in the TC, but some are
then located in the CDT project. The default and the recommended choice is to automatically
generate the CDT project from the TC. Use then the Workspace output path property to
specify the location of the CDT project and all generated code. You may use an absolute path
for this property, but more commonly a relative path which then will be resolved against the
Location property (which by default is the location of the workspace). Note that the name of
the CDT project (either existing or generated) will be determined from the last segment of the
output path. Read more about the "Automatically create and update target project" property in
Building Generated Code.

You can document a TC by writing a comment in the Documentation field. The comment has
no impact on building the TC.

References tab
A TC may reference other TCs. Use the buttons in this tab to add or remove TC references.
You can navigate to referenced TCs by double-clicking on them.

Inherited transformation configurations lists other TCs from which this TC inherits. TC
inheritance is a mechanism that allows you to group common properties in a single TC rather
than to duplicate them into many TCs. See Transformation Configuration Inheritance for
more information about transformation configuration inheritance.

Prerequisite transformation configurations lists other TCs which are "prerequisites" of this
TC. When a TC is built, all its prerequisite TCs will first be built. This can for example be
useful when building an executable TC that links with libraries built by other TCs (added as
prerequisites). See Prerequisite transformation configurations for more information.

The relationships to other TCs that you create using the References tab are important in order
to understand what happens when the TC is built. If there are many TCs and relationships it
can be useful to visualize this graphically. You can do this by means of the Project Explorer
context menu command Visualize - Explore in Graphs. Read more about this feature in the
built-in help topic Model RealTime User's Guide – Articles – Editing – Diagrams –
Visualizing TC relationships graphically.

6

Code Generation tab
This tab contains all properties that control how to translate the source elements of the TC to
C++ code.

Top capsule is a property that is only available for an executable TC. It specifies which
capsule that should be automatically incarnated when the executable is run. The top capsule is
hence the entry point of the application. The top capsule is always a source element of the TC
(explicitly or implicitly), or is located in one of the source elements.

Compile data classes individually controls how data classes (i.e. passive classes) are
compiled. By default this property is set, which means that each data class will be built
separately by a dedicated rule in the generated makefile. It can look something like this:

DataClass$(OBJ_EXT) : ../DataClass.cpp ../UnitName.h ../DataClass.h
 @$(FEEDBACK) Compiling Doc_target:DataClass
 $(1_CC) $(CC_HEAD) $(1_CCFLAGS) $(1_INCPATHS) ../DataClass.cpp $(CC_TAIL)

If you set this property to false, then make rules for data classes will not be generated, and
instead they will be included at the end of the generated unit file (by default called
UnitName.cpp):

#define PRAGMA_IMPLEMENTED
#include "DataClass.cpp"

The main reason for not compiling data classes individually would be to improve compilation
time (compiling one big file can be faster than compiling several small files). However, if you
use a build system that supports parallelization of make rules, then the opposite may be true.

Generate code qualifiers is by default turned off. If it is turned on an extra line will be
generated before each user code snippet. This line contains the fully qualified name of the
UML element to which the code snippet belongs. This information can make it easier to
understand the connection between generated C++ code and the model. It can also be used by
3rd party tools that analyze generated C++ code.

Here is an example of what a generated user code snippet could look like with this property
turned on. The first line will not be generated when this property is off.

// ELEMENT: HelloWorld::HelloWorld::State Machine::Region1::Initial::Initial
//{{{USR platform:/resource/DoxygenTest/HelloWorld.emx#_xjldcPkAEeGEhK1G362qaA
log.log("Hello World from C++ Capsule");
context()->abort();
//}}}USR

Generate fully qualified state names can be useful to set if you have hierarchical state
machines where the same state name is used more than once. The rtg_state_names array in
generated code will then contain fully qualified state names which can make debugging and
trouble-shooting easier.

Optimize handling of frequent triggers is an optimization property for generating C++ code
that is more efficient in handling frequently triggered state machine triggers. If you know that
some triggers in your capsules' state machines get triggered much more frequently than
others, you can mark those triggers with the <<frequent>> keyword. When this property is set

7

the generated rtsBehavior function will contain special if-statements for matching the
current state, and the event and port of the current message, with the state, event and port of
the frequent triggers. These if-statements are placed early in the rtsBehavior function to
ensure that as little code as possible needs to execute when dispatching a message for a
frequent trigger. Here is an example of what such an if-statement may look like:

if (/* frequent trigger*/ LIKELY(stateIndex == 4/*Initial*/ && portIndex == 2/*p*/
&& signalIndex == PROTO::Base::rti_IE1))
{
 chain3_e1();
 return;
}

Note that the code uses a macro LIKELY which is generated into the unit name header file.
For GCC the macro is defined like this to give the compiler a hint that it's likely that the
condition will be true:

#define LIKELY(x) __builtin_expect((x),1)

The property Context sensitive library build can be set in order to optimize the build of
prerequisite library TCs so that their lists of source elements are filtered to avoid building
elements that are not referenced by the source elements of the built TC. Each library will
hence be analyzed to determine what parts of the library that are necessary in the context of
the built TC, and only those parts will be built. This can significantly speed-up the build of a
TC with prerequisite TCs. See Context Sensitive Library Builds for more information about
this feature.

Default arguments is a property that is only available for a TC that builds an executable or
test executable. It specifies the default command-line arguments to use, in case the executable
is started without providing any command-line arguments. The arguments should be a
comma-separated list of valid C++ strings. Here is an example:

Output subdirectory is usually left empty. However, if you target the same CDT project
from multiple TCs you may want to place the code that is generated from each TC into a
separate subdirectory, in order to avoid naming conflicts between generated files and to make
the structure of the CDT project more clear.

Unit name specifies the base name of the "unit" files. By default this property is "UnitName"
which means that the unit files will be called "UnitName.cpp" and “UnitName.h”. The unit
files contain certain information that applies to the whole unit of code that is generated from a
TC. For example, you will find the mapping of logical threads to physical threads in
“UnitName.cpp”. The RTMain::entryPoint() function, which is the generated application's
entry point, is also located there.
The unit header file is included in each generated implementation file.

8

Unit subdirectory is usually left empty, but in case you want the unit file to be generated into
a specific subdirectory you can specify it here. One reason for using this property could be
that the specified unit file name clashes with the name of another generated file.

Include unit header file without subdirectory path can be set to just use the name of the
header unit file in #include directives, without the unit subdirectory path. The unit header file
is included in each generated C++ file, and by default the #include directive looks like this:
#include <unit-sub-dir/UnitName.h>

However, if this property is set the unit subdirectory path is omitted, and the #include
directive will instead be:
#include <UnitName.h>
This is useful in case the preprocessor include path contains the unit subdirectory.

Comment style specifies what comment style to use for documentation comments in
generated C++ code. A documentation comment is the text you can enter in the
Documentation property tab when selecting an element in the model. By default C++ style
comments (// ...) will be used. The code generator also supports two comment styles that
can be used with the Doxygen publishing tool: Doxygen_JavaDoc (/** ... */) and
Doxygen_QT
(/*! ... */). Choose one of these if you plan to run Doxygen on generated code.

If documentation comments contain rich text (i.e. markup such as underlining, colors etc) they
will be converted to plain text by the C++ code generator.

Common preface allows you to write some code that will be inserted verbatim into the
header unit file (by default called "UnitName.h"). Since the header unit file is included by all
files that are generated from the model, you can use the common preface to define or include
definitions that should be available everywhere in generated code.

Capsule factory can be used for specifying a global capsule factory which will be used for
creating and destroying capsule instances in case no more specific capsule factory is specified
on a certain capsule part. You should specify a C++ expression here that evaluates to an
RTActorInterface*. To learn more about capsule factories, see the article "Custom capsule
constructors" in the Model RealTime documentation. You can find this document in the built-
in Help under Model RealTime User's Guide – Articles – Modeling realtime applications.

C++ code standard specifies the C++ code standard which the generated code will comply
with. By default the code standard is specified as a workspace preference (RealTime
Development – Build/Transformations – C++ – C++ code standard) and you only need to set
this TC property if you want to override the code standard for a particular build.

Copyright text may be used to insert a common comment block in the beginning of each
generated file, for example a copyright text. Here is an example:

9

// Licensed materials - copyright ACME corp
// Copyright ACME Corp 2010, 2018. All rights reserved.

Target Configuration tab
This tab contains properties that control how to generate the makefile to be used for building
generated C++ code. Note that if the “Target” properties on the “ Main ” tab specify an existing
CDT project to use for building generated C++ files, then the properties in this tab are not
applicable since the properties in the CDT project will be used instead. Also, if the “Artifact
type” property on the “Main” tab is set to “C++ External Library” then this tab will contain
different properties as described in External Libraries.

Use absolute paths in generated makefile should normally be unset, but if set the generated
makefile will use absolute rather than relative paths for some of its variables.

Target services library specifies the location of the RT services library to use. The default
value of this setting is ${RSA_RT_HOME}/C++/TargetRTS which points at the location in
the Model RealTime installation where the C++ implementation of the RT services library
resides. If you have your own version of the RT services library, enter the path to it here.

If you have imported your TC from Rose RT, the RT services library in Rose RT will be used
instead. If you prefer to use the implementation in Model RealTime instead, which is
improved in many ways, you should therefore update this property after the import from Rose
RT.

TargetRTS configuration specifies which target configuration to use. A target configuration
is a specific version of the RT services library that is adapted to the specific target
environment that is used. Read more about target configurations in the document “RT
Services Library”. The target configurations that are shown in the drop down menu for this
property are dynamically extracted from the specified “Target services library” directory.
Hence, if you don't see any target configurations in the drop down menu, ensure that you have
set-up “Target services library” to point to a valid directory that contains target configurations
for the RT services library.

Make type specifies the dialect of the generated makefile. The following dialects are
supported:

 Microsoft (MS_nmake)
 Unix (Unix_make)
 GNU (Gnu_make)
 ClearCase (ClearCase_clearmake or Clearcase_omake)

If this property is unset (or set to Default) the makefile dialect will be determined based on the
OS that is used (“MS_nmake” for Windows, and “Unix_make” for Unix).

Compile arguments specifies additional arguments to use when compiling generated C++
code. For example, if you want to add debug information to compiled code you can specify
the -g flag if using the GNU C++ compiler. Or use $(DEBUG_TAG) as a compile argument
which will be expanded to the correct debug flag depending on compiler used.

10

Compile command is by default set to $(CC). This variable expands to the compiler to use,
which follows from the property "TargetRTS configuration". If you want to use a different
compiler than the one that is by default used for the selected TargetRTS configuration, then
you can change this property.

Executable name specifies the name of the generated executable. This property is only
available for executable TCs, and it is by default set to executable$(EXEC_EXT). The
variable $(EXEC_EXT) expands to the file extension to be used for executable files on the
target platform (which follows from the property "TargetRTS configuration").

Library name specifies the name of the generated library. This property is only available for
library TCs, and it is by default set to library$(LIB_EXT). The variable $(LIB_EXT) expands
to the file extension to be used for library files on the target platform (which follows from the
property "TargetRTS configuration").

Inclusion paths allows you to specify additional include paths for the C++ compiler. Type
each include path on a separate line. For example:

Note that you do not have to explicitly specify inclusion paths for the current target project or
any of the prerequisite target projects, because these are added automatically by the makefile
generator. For example, assuming that the above two inclusion paths were specified for a TC
with a prerequisite TC ”libTC”, then the generated makefile would have the following
inclusion paths:

0_INCPATHS = \
$(INCLUDE_TAG)../../libTC_target \
$(INCLUDE_TAG).. \
$(INCLUDE_TAG)C:/mylibs \
$(INCLUDE_TAG)C:/path

The variable $(INCLUDE_TAG) expands to the compiler flag to use for specifying include
paths (e.g. -I).

Link command specifies the link command to use. This property is only available for
executable TCs, and is by default set to $(LD). This variable expands to the linker to use,
which follows from the property "TargetRTS configuration". If you want to use a different
linker than the one that is by default used for the selected TargetRTS configuration, then you
can specify which linker to use through this property.

Link arguments specifies additional arguments for the linker.

Link order (custom) provides a way to control the link order for libraries when linking an
executable. The default link order is specified in a workspace preference (RealTime
Development – Build/Transformations – C++ – Link Order) and is by default:

11

$(USER_LDFLAGS) $(ALL_OBJS_LIST) $(USER_OBJS_LIST) $(UNIT_LIBS) $
(USER_LIBS)

You may rearrange these variables if you need libraries to be linked in another order. Any
value set for this TC property overrides the value of the workspace preference for that
particular TC. Hence, if you want a particular link order to be used for all your TCs, you may
instead change the value of the workspace preference.

Build library command specifies the command for building libraries. This property is only
available for library TCs, and is by default set to $(AR_CMD). This variable expands to the
command to use for creating a library, which follows from the property "TargetRTS
configuration".

Build library arguments specifies arguments for the build library command. This property is
only available for library TCs.

Make command and Make arguments specify which make command and arguments to use.
The make command is by default $defaultMakeCommand which expands to the name of the
make tool to use, which follows from the property “TargetRTS configuration”. By default the
flag -s is used (silent make, without echoes). Separate the make arguments using a space.

Target configuration name maps to a folder in the target CDT project where all generated
files that are not source code will be placed. This includes for example makefiles and the files
that are produced by these makefiles (typically binaries). The property is by default set to
“default”. If you target the same CDT project from multiple TCs you must ensure that all
these TCs have different target configuration names to avoid file name clashes and
accidentally overwriting files generated by one TC with files generated by another TC.

Top make command and Top make arguments specify the make command and arguments to
use for the invocation of the top-level make file (called batch.mk). You may use these properties
to execute some "pre-make" commands before the real build starts, for example by using a script
as the top make command. It is only useful to set these properties if the workspace preference
RealTime Development – Build/Transformations – Type of Generated Make Files is set to
Recursive, because then the top-level make file will contain recursive calls to other make files. If
these properties are empty, the properties “Make command” and “Make arguments” will be used
instead. See Makefile Generation for more information about inclusive and recursive makefiles.

Compilation make insert can be used to insert custom contents into the generated makefile. The
text that you enter in this field will be copied verbatim into the generated makefile, just before the
make rules section. You can use this property to add user-defined rules, variables, directives etc. to
the makefile. For more information about what variables that are available to use in the
compilation make insert fragment refer to the generated makefile. Also see the file <Model
RealTime INSTALLATION>/rsa_rt/C++/TargetRTS/libset/default.mk.

User libraries allows you to specify custom libraries to pass to the linker. Type each user library
file on a separate line.

User object files allows you to specify custom object files to pass to the linker. Type each object
file on a separate line.

12

Threads tab
This tab contains properties that control which threads to use in the generated application, and
how to map logical threads onto physical threads. See the document “RT Services Library”
for more information about logical and physical threads.

By default there are two physical threads:
• MainThread

This is the thread which by default runs all capsule instances in the model.
• TimerThread

This thread is used by the Timing service of the RT services library to implement timers.
It is always present even if you don't use timers in the model.

You may add and remove additional physical threads using the Add and Remove buttons.

For each physical thread you can set a few properties:
• Name

The name of the thread.
• Priority

The priority of the thread. It is by default set to DEFAULT_MAIN_PRIORITY. See the
file RTTarget.h in the RT services library for the available priorities.

• Stack size
The stack size in bytes allocated by the thread. It is by default set to 20 kB. Thread stack
sizes are set-up dynamically by code in the unit file (called “UnitName.cpp” by default).
Note that some target platforms do not allow modifying the stack size of the main thread
dynamically.

• Implementation class
The class in the RT services library that implements the thread. It is by default
RTPeerController for all threads except the TimerThread which uses RTTimerController.
You may specify your own thread implementation class instead to implement a custom
controller, for example to use a different message handling strategy.

In the table “Logical threads” you can add logical threads with names that become available
in the generated C++ code. These logical threads appear as a node under one of the physical
threads in the “Physical threads” table. To map the logical thread to a different physical thread
you can drag-and-drop it onto the desired physical thread. Alternatively you can use the drop-
down menu in the "Logical threads" table:

Code tab
As already mentioned, this tab shows all properties that have been set in the TC. Each
property with a value different from its default value is present. The properties are shown in
JavaScript syntax and you can edit them as needed. Note, however, that the Code tab does not
provide a full-fledged JavaScript editor. If you plan for extensive textual editing of TCs, you

13

may prefer to install a dedicated JavaScript editor into Model RealTime, or edit them with an
external JavaScript editor.

You can navigate from properties shown in the Code tab to the corresponding properties
shown in the other tabs. Right-click on a property in the text and perform the command
”Navigate to property tab” shown in the context menu.

The Code tab includes a useful feature that automatically sorts properties upon saving a TC
file. For this, the "Auto sort properties on save" setting in the workspace preferences at
RealTime Development - Transformation Configuration Editor is always enabled by default.
This guarantees that properties are sorted automatically when saving TC files in your UML
application. Keep in mind that when this feature is active, comments at the top of a property
will also be moved along with the property to its new position during sorting.

14

This functionality offers several benefits:
• Readability: Easier to scan and understand, especially in larger files.
• Consistency: Promotes uniform style across your project's TC files.
• Reduced merge conflicts: Lowers the risk of merge issues when multiple people edit

the TC file.

Dynamic Properties in Transformation Configurations
TC properties need not have static values only. Since they are defined using JavaScript you
can use any JavaScript expression to define the value of a property. But even without using
JavaScript, properties can become dynamic by referencing variables.

Another way to make a TC dynamic, is to let a script change it on the fly when it is built.
Read more about this in Build Variants.

Pre-defined Variables
As already mentioned above there are several variables that can be used in the values of TC
properties. Most of these variables are defined in makefiles and the best way to learn about
them is to look in the generated makefile and the makefiles that it includes. For example,
many variables are defined in the file <Model RealTime
INSTALLATION>/rsa_rt/C++/TargetRTS/libset/default.mk.

However, there are also a few other special variables that can be used in a TC, and that will be
expanded during the build of the TC. The table below lists those variables:

$(TOP_CAPSULE) This variable can be used in the "Executable name" property of
a C++ Executable TC. It expands to the name of the top
capsule that is specified by the TC.

$(TCONFIG_NAME) This variable expands to the name of the TC that owns the
property where the variable is used. Use this variable in TC
properties where you otherwise would hard-code the name of
the TC, for example in the "Workspace output path" property.

$(CAPSULE_CLASS) This variable expands to the name of a class generated from a
capsule, and can be used in the "Capsule factory" property. For
example, you can use it for passing the capsule class as a
template parameter to the specified capsule factory, so that the
capsule factory can create an instance of the capsule class using
the new operator.

$(workspace_loc) This is a standard Eclipse variable which expands to the
location of the Eclipse workspace. It can be used in the
"Workspace output path" property. It is also available as a make
file variable and can therefore be used in all properties which
appear in the generated make file (e.g. "Inclusion paths").

15

User-defined Variables
It is possible to define your own variables and use them within a TC. This can be useful in
order to create more generic TCs which can be used in different environments. Rather than
changing the TC in each environment, or using different TCs for different environments, the
user-defined variables can be changed instead in order to accomplish the build variations that
are necessary in a particular environment.

User-defined variables can be defined in different contexts. When a user-defined variable is
used in a TC these contexts are scanned in a fixed order to locate a value for the variable. The
following contexts are available (listed in the order in which they are scanned):
1. Path variables defined in the workspace preferences at General – Workspace - Linked

Resources
2. String substitution variables defined in the workspace preferences Run/Debug – String

Substitution
3. Environment variables defined in the system

Most variables do not need to be resolved until the TC is built by the model compiler. If a
referenced variable is not defined in any of the three contexts listed above, the model
compiler will print a warning. The build will still proceed, but may fail later since the variable
could not be resolved. It is therefore strongly recommended to pay attention and fix such
warnings. Here is an example of what the warning will look like:

WARNING : Cannot resolve variable '$(TARGET_LOC)' in 'Location' property:'$
(TARGET_LOC)'

Note that path variables always must specify an absolute path, and can therefore only be used
in TC properties that specify paths. Here is the list of TC properties where user-defined
variables can be used:
• The "Location" property in the Main tab. For example, a location specified as "C:/users/$

(USER)" can be used to let the location of the target project be dependent on a USER
variable which each user of the TC can set-up differently (in this case either as a string
substitution variable or environment variable). If the location instead would be specified
as "$(TARGET_LOC)" then a path variable could be used instead, since the variable then
can be resolved with an absolute path.

• The "Target services library" property in the Target Configuration tab. Note that this
variable is resolved already by the TC editor in order to populate the list of TargetRTS
configurations.

• The "Build folder" property in the Target Configuration tab for a ”C++ External Library”
TC.

• The "Build command" property in the Target Configuration tab for a ”C++ External
Library” TC.

• The "Clean command" property in the Target Configuration tab for a ”C++ External
Library” TC.

• The ”Constants” property in the Target Configuration tab for a ”C++ External Library”
TC. Here path variables are not applicable since the variables specify the values of
constants to be used during the build. See External Constants for more information.

16

JavaScript Expressions
The most dynamic way to specify the value of a TC property is to use a JavaScript expression.
Such expressions can reference variables defined in JavaScript, contain calls to JavaScript
functions and in general use all other features of the JavaScript language. JavaScript
expressions are evaluated using Eclipse Nashorn. This in turn means that they can contain
calls to Java APIs. For example, here is an example of how to define a TC property by
dynamically reading the value of an environment variable using a Java API:

tc.inclusionPaths = [
 java.lang.System.getenv("INCLUDES");
];

To make it easier to work with dynamic TCs, the TC editor provides a feature for evaluating
all properties of a TC and view them in a read-only TC editor. The command to use is called
“Open evaluated version” and is available in the TC editor toolbar menu.

Model Element References in Transformation Configurations
Some TC properties refer to elements in the model, for example "Sources" and "Top capsule".
By default such a reference consists of a URI that identifies the model file where the element
is located (relative to the Eclipse workspace folder), and the unique ID of the element. Here is
an example:

tc.sources = [
 'platform:/resource/xxx/CPPModel.emx#_KZK5YBuoEeyDNsbmUkqd7g'
];

You can navigate to the referenced element in the Project Explorer by Ctrl-clicking on the
URI (which then becomes a hyperlink). You can also hover the mouse over the URI to get a
popup showing the element name.

There are two workspace preferences (in RealTime Development - Transformation
Configuration Editor - Model References) you can set to change the format of these URIs:

• Use relative URIs to reference model elements
If set, the file part of the URI will be relative to the TC file rather than the workspace
folder.

17

• Use fully qualified names in model element URI references (instead of xmi id)
If set, the element's fully qualified name will be used instead of its unique ID.

Both these preferences make model element URI references more portable so you can
copy/paste a TC file (or a project containing a TC file) without having to manually update all
model element references in the copied TC. However, certain refactorings (like moving a
referenced element) may then require you to update the URIs. Note that the preferences only
affect what URI format to use for newly created model element references, and will not
change existing references in the TC.

The navigation and mouse hover features mentioned above works regardless of how these
preferences are set (but the need for these features may be smaller since with qualified names
it's easier to conclude directly from the URI what element it references).

Creating Transformation Configurations
When you create a new model project using a template in the "UML Capsule Development"
category, you will get a default transformation configuration to use for building the model. If
you want to create additional TCs you may do so from the context menu of the
"Transformation Configurations" virtual folder in the Project Explorer:

You can also do it by means of the File – New – Other – Transformation Configuration
command, or by copy/paste of an existing TC in the Project Explorer.

Before you can build a new TC you need to set-up a few properties. At a minimum you need
to specify where generated code should be placed (the “Target” properties) and which
elements to translate to C++ (the “Sources” property). Depending on the type of TC (“Artifact
type” property) you may also need to set-up some other properties. For example, for an
executable TC you must specify the “Top capsule” property (otherwise Model RealTime
doesn't know which capsule to incarnate at application start-up).

You can check so that the TC is well-formed by validating it.

If no errors are reported, you can then generate code for the TC (that is, just generate the C++
code, not build it):

18

Transformation Configuration Inheritance
You may create more than one TC for transforming a particular model. One reason for doing
so could be to build different variants, for example a debug and a release version, of the same
application. Often the majority of all properties in such variant TCs are identical, and there are
only a few properties which have different values. To avoid duplicating properties in multiple
TCs you can arrange your TCs in an inheritance hierarchy, where common properties are
placed in a base TC which the other TCs inherit from. You would not build that base TC. It
only serves as a common place for properties that apply to all inherited TCs, unless they
override them.

Here is an example of a TC “Specific” that inherits from a base TC called “Common”:

The inheritance can also be seen in the Project Explorer (if you have set the preference
RealTime Development – Project Explorer – Show inherited transformation configurations):

Multiple inheritance of TCs is supported, i.e. a TC can have more than one parent TC.

When you change a property of a TC that inherits from another TC, the property will be
marked in boldface. This shows that the property has been overridden in the inheriting TC.
For example:

Note that the property may have a different or the same value in the inheriting TC as in the
inherited TC. Boldface just shows that there is a value defined for the property in the
inheriting TC.

There are also a few other visual indications of TC properties which are useful to know about.
The picture below summarizes them:

19

There are several commands available in the TC editor which help you work with inherited
properties. Commands that apply for a single property are located in the context menu of that
property (right-click on the property label), while commands that apply for all properties in
the TC are located in the toolbar menu in the TC editor.

 Revert to Saved
Restore the property to what is stored in the TC file. Useful in case you made some
changes (not yet saved) that you want to undo.

 Delete Value
Remove the overridden value for the property, so that the value stored in the inherited
TC is shown instead. After this the property will appear in italics instead of boldface to
show that it no longer is overridden.

 Revert All to Inherited Value
Reverts (i.e. deletes) overridden values for all properties in the TC.

 Override
Overrides a property by storing the inherited value in the inheriting TC file. After this
the property will appear in boldface to indicate that it now is overridden.

 Override All
Overrides all properties in the TC.

 Reinherit Identical Property Overrides
Deletes the values for all properties that are overridden but have the same value as in
the inherited TC.

 Navigate to Inherited Value
Navigates to the inherited value for a TC property in a super TC. This command can
be useful in order to find out from where a certain TC property gets its value (in case
there are multiple super TCs).

 Navigate to Source Code
Shows where the property is assigned its value in the Code tab.

 Navigate to Parent Transformation Configuration
Similar to "Navigate to Inherited Value" but works also for TC properties where the
value is not inherited, but a default value defined in some parent (i.e. super) TC.

You can navigate to an inherited TC by double-clicking on an entry in the "Inherited
transformation configurations" list. This, combined with the command "Show in Project
Explorer" which also is available in the toolbar menu of the TC editor, makes it easy to
navigate between model projects that are related by means of TC inheritance.

20

Prerequisite Transformation Configurations
If a TC A has a TC B as its prerequisite it means that B has to be built first, before A can be
built. You can use prerequisite relationships when you need to enforce a particular order in
which different TCs are built. The typical example is to build an executable that links with a
C++ library. The library must be built before the executable can be built, so we would use a
prerequisite relationship from the executable TC to the library TC.

Prerequisite TCs are by default shown as subnodes in the Project Explorer, and you can
navigate to them by double-clicking. This, combined with the command "Show in Project
Explorer" which is available in the toolbar menu of the TC editor, makes it easy to navigate
between model projects that are related by means of TC prerequisite relationships. If the
preference RealTime Development – Project Explorer – Show inherited transformation
configurations has been set, prerequisite TCs are shown under a "Prerequisites" node to
distinguish them from inherited (i.e. parent) TCs.:

Active Transformation Configurations
You can set a TC in your model project as active to tell Model RealTime that you want to
build this particular TC when building the project. To set a TC as active you can right-click
the TC and enable "Active Transformation Configuration" in the context menu. You can also
change the active TC using the “Build Active Transformation Configuration” button as
explained in Interactive Build. An active TC is marked with a green checkmark in the Project
Explorer. For example:

Managing the Sources of a Transformation Configuration
It is important to set-up the source elements of a TC properly. Ideally you want to transform
only those elements that are really necessary to have in the C++ executable or library that
results from building the TC. If you transform too many model elements the build will be
slower since unnecessary C++ files have to be generated and compiled. Also, the produced
binary files may become bigger than necessary.

If all elements contained in a package should be part of the executable or library, you can
specify that package as the only source element of a TC. This is convenient since you then
don’t have to update the Sources list each time new elements are added to the package.
However, there is of course also the risk that you, at some point, add some model elements to
the package that only are needed at model-level, and not in the C++ application. And this
results in a longer than necessary build time, and possibly also a binary that is bigger than
necessary.

21

Model RealTime has three features that can help you optimize the build to avoid building
unnecessary source elements: Organize Sources, Detect Source Dependencies Automatically
and Context Sensitive Library Builds. All these features work by analyzing references in the
model to find out what elements that need to be included in the build.

Organize Sources
The TC editor provides a dialog that can assist you to set-up the Sources list in the optimal
way. Open this dialog by pressing the "Organize Sources" button:

Before you can press this button you need to have specified the top capsule (for an executable
TC) or at least one source element (for a library TC). The Organize Sources feature will use
these elements as the starting point when analyzing references in the model to find out what
elements that need to be built.

Here is an example of what the Organize Sources dialog may look like:

22

The upper table lists elements which you are suggested to add as source elements. For each
element you can see the reference that is the reason for why that element needs to be a source
element of the TC. If all elements in a package are needed source elements, then the package
itself will be suggested to be added instead (to keep the Sources list short).

The lower table lists elements which are currently listed as source elements, but don't need to
be so, because they are not referenced by other source elements or the top capsule. Here you
may also find a package in case not all of its contents need to be transformed by the TC. Then
the needed elements of the package are candidates to be added, and the package itself can be
removed from the Sources list.

Note that Organize Sources only provides suggestions for how to update the Sources list to
make it optimal. Use the checkboxes of each element to decide if you want to follow that
suggestion or not. Then press the Finish button to update the Sources list.

It's important to be aware that all suggestions made by Organize Sources are made by
analyzing references in the model. References in C++ files will not be included in the
analysis. Also, for a library it is possible (and even common) that you want to include more
elements than what is used by the library itself. Hence, it's important to carefully review all
suggestions made by Organize Sources before updating the Sources list accordingly.

Sometimes an element that is referenced should still not be a source element of the TC
because it's already the source element of a prerequisite TC in another project. To avoid
building such an element twice you can use the checkbox "Show only elements from current
project". Then referenced elements located in other projects will be filtered from the table, so
you can avoid to add them. It can also help to use the checkbox "Show fully qualified names"
to see where the elements are located.

If you use Organize Sources as your way of keeping the Sources element optimal, remember
to invoke it at regular intervals. As you change your model, the Sources list may need to be
updated again to remain optimal.

Detect Source Dependencies Automatically
If the preference RealTime Development – Build/Transformations – C++ – Detect source
dependencies automatically is set, Model RealTime will automatically detect if there are any
elements that need to be included in the build, but that are not listed as source elements
neither in the built TC nor in its prerequisites. When an executable TC is built, this analysis
starts from the specified top capsule and any elements present in the Sources list. All elements
that are referenced by these elements, directly or indirectly, will be automatically included in
the build. This means that you can leave the Sources list empty for an executable TC and let
Model RealTime automatically compute the source elements that need to be built.

When you build a library TC, there is no top capsule, and in that case the Sources list must
contain at least one element which the reference analysis can start from.

Note that an automatically added source element will be built by the same TC that builds the
element that references it. If the built TC and its prerequisites specify different build settings,

23

this can lead to that automatically included source elements get built with incorrect build
settings. Therefore, the model compiler will print a warning in this case:

16:04:33 : WARNING : Found elements which are not included as source into any TC,
some of them could have been added into wrong context

You can ignore this warning if you know that it doesn't matter into which TC the missing
elements are included.

It's important that all users who build a model agree on if the “Detect source dependencies
automatically” preference should be set or not. When it is used you can no longer look at the
Sources list of a TC to understand which elements that will be transformed when the TC is
built. Also note that when this preference is set, it's solely the references from elements in the
built TC that determines which elements that need to be built. The source elements of
prerequisite TCs will be included in the build, but their references will not be analyzed. It's
very important that references in the model are correctly set-up, so they are bound to the
expected model elements. If you find that unexpected model elements get transformed when
using this feature, you can turn on the preference RealTime Development –
Build/Transformations – C++ – Report details about automatically added source elements.
Then messages will be printed about which elements that are considered necessary to
transform, and why.

One way to use the “Detect source dependencies automatically” feature is to have it enabled,
but anyway update the TC Sources list with the elements that are reported as missing. The
model compiler prints a summary message of all elements it found to be referenced, but that
are not listed as source elements in the TC or its prerequisites. This message is on a format
that makes it possible to directly copy and paste it into the Code tab in the TC editor to update
the Sources list conveniently. There are two benefits with taking the extra time to update the
Sources list:

• You can decide to which TC the missing source elements should belong. They can
either be added to the built TC or to one of its prerequisite TCs. As mentioned above
this choice is important if the TCs use different build settings.

• It can be easier to understand what parts of the model a TC builds when it explicitly
lists the source elements.

Here is an example of what this message can look like:

07:54:38 : INFO : Adding missing sources on-the-fly to "MyProj/HelloWorld.tcjs" :
'platform:/resource/MyProj/HelloWorld.emx#_s1xKwPoYEemJs6K8xfurHQ' /*
HelloWorld::HelloWorld */,
'platform:/resource/MyProj/HelloWorld.emx#_utwnIPoYEemJs6K8xfurHQ' /*
HelloWorld::MyClass */

Context Sensitive Library Builds
It is common that the source elements of a TC with prerequisite libraries only reference a
small subset of all elements that are available in those libraries. This is because a library is
typically designed for being used in many different contexts (executables and/or other
libraries) and in each such context only some limited part of the library is used. For example,
consider the situation when a library TC is the prerequisite of two different TCs A and B:

24

The source elements of A only reference some parts of the library (marked in green above),
while the source elements of B reference a different subset of the library (marked in blue
above).

By default a library TC is built into a library which contains all its source elements. All
executables and libraries which have that library as a prerequisite can then link with it.
However, if the library is big, and you only want to build one particular TC that uses it, the
time it takes to transform and compile source elements that are not referenced is actually
wasted.

To address this problem, Model RealTime supports a feature called “Context sensitive library
builds”. It is controlled by a preference RealTime Development – Build/Transformations – C+
+ – Context sensitive library builds. It is based on analyzing which elements that are actually
referenced by the source elements of the TC that is built. All elements from prerequisite TCs
that are referenced will be transformed and built into object files. These object files are then
put together into a library which is linked with the executable or library that corresponds to
the top-level TC that is built.

This means that the result of building a library TC will be different depending on how it is
built:
• If it is built directly (i.e. as a top-level TC) then all specified source elements will be built

into the library as usual.
• If it is built indirectly (i.e. as a prerequisite of another TC) then only those source

elements of the library that are actually used by source elements of that other TC will be
built. The result of the build will be a limited version of the library that only contains
object files for each source element that is used. This version of the library can hence not
be reused by other TCs that are built, and it is therefore placed in the output folder of the
top-level TC.

If you only want to build some TCs in a context sensitive way, you can set a TC property
called “Context sensitive library build”. The property applies for the TC itself and also for all
its prerequisite libraries.

The "Context sensitive library build" feature can be combined with "Detect source
dependencies automatically". In that case source elements of prerequisite TCs will only be
included in the build of the library if they are referenced by an element in the built TC, and
missing source elements will be automatically added.

Automated Source Management and External Code
The strategies for automating the management of TC source elements described above all
relies on correct references in the model, since that is what is used for determining what gets

25

built. If you have external C++ code that references model elements, you must therefore make
sure that these references are formally represented as dependencies in the model. Otherwise
the build may skip those referenced elements, which will lead to build errors. The
recommended way to include external code that references model elements is to use artifacts,
since you then can use regular dependencies on the artifact to represent the references to other
elements that exist in the code. However, if you have external code outside of the model that
contains references to code generated from the model, then you can follow the steps outlined
below:

1. Create a special class in the model that contains the elements that are referenced from
external C++ code. Open the Properties view and go to the ”C++ General” section. Set
”Generate files” to Header so that only a header file gets generated for this class.

2. For this special class add dependencies to all UML model elements that are referenced
by external code.

3. Finally create dependencies to this special class from all elements of the model that
are referenced from other models. This ensures that whenever you build those other
models, the model elements that are referenced from the external code will also be
included into the build.

Building Generated Code
Once the model has been transformed to C++ code in a CDT project, the next step in the build
process is to build the generated code (i.e. to compile and link it). This is done by building the
CDT project. Depending on the TC property "Automatically create and update target project"
the CDT project will be configured to be built in different ways. If this property is unset the
CDT project is assumed to have been properly set-up so it can be built directly. However, if
the property is set the model compiler will also generate a makefile which the CDT project
will build using a make tool (acting as an external builder from CDT's point of view). You can
open the Properties dialog on a CDT project if you are uncertain how it will be built. Here is
an example of a CDT project that will be built using a make file:

26

To learn more about how a CDT project is built you may refer to the Eclipse CDT
documentation. In the rest of this chapter we will look at the case when the build takes place
using a generated makefile.

A big advantage with building a generated C++ project using a makefile is that the workspace
will only be locked for modifications during the time it takes to run the C++ transformation.
Once all code has been generated (including CDT projects and makefiles), the rest of the
build is done by make on the makefiles and during this time the workspace is not locked. This
means that you can continue to work in the model as soon as the transformation phase is
completed. Usually this phase is much shorter than the time it takes to run make on the
makefile.

If you use the model compiler as your build tool, this can be further improved so that the
workspace only is locked when generating the makefile. This makefile can then drive the
complete build, including C++ transformations. This feature is, however, currently only
supported for batch builds.

Makefile Generation
There are two kinds of makefiles that may be generated by the model compiler (controlled by
the preference RealTime Development – Build/Transformations – Type of Generated Make
Files):

 Recursive makefiles
In this case the makefile that is generated for the TC that is built will recursively
invoke make on makefiles that are generated for the prerequisite TCs. There will
hence be one invocation of make for each TC that is part of the build.

 Inclusive makefiles
In this case the makefile that is generated for the TC that is built will include all rules

27

that are necessary to build both the TC itself and all its prerequisite TCs (both direct
and indirect). There will hence only be a single invocation of make.

The default is to generate recursive makefiles, since it yields makefiles that are shorter and
easier to read. However, the performance of the build may be improved if you instead choose
to generate inclusive makefiles. This is in particular true for make tools that support parallel
builds, since the distribution of build tasks on different computers often can be done more
efficiently with a single makefile as input.

The makefile that is generated for the TC that is built is called batch.mk. Note that in spite of
its name this makefile is used both for interactive builds and batch builds. The build is done
by running the following make command:

<make-command> <make-arguments> -f batch.mk all

where <make-command> and <make-arguments> are specified in the "Target Configuration"
tab in the TC.

In addition to batch.mk a makefile called Makefile is also generated. This makefile (and
included makefile fragments 0.mk, 1.mk etc.) is invoked from batch.mk.

Interactive Build
An interactive build (sometimes also called IDE build, or GUI build) is triggered by pressing
the “Build Active Transformation Configuration” toolbar button:

This button is always enabled and builds the active TC in the selected project. If a project is
not directly selected in the Project Explorer, Model RealTime uses the project to which the
selected element belongs. For example, if you select a capsule the Build Active TC button will
build the active TC in the project that contains the capsule.

If the project contains TCs but none of them is marked as active, then a dialog will appear
which lets you choose which of the project's TCs to activate and build:

28

If the project does not contain any TCs at all, the dialog will let you choose a TC from another
project in the workspace.

Often you always want to build the same TC no matter what element that happens to be
selected at a particular point in time. In this case you should lock the Build Active TC button
to the project that contains that TC. This is done from the menu that appears when clicking on
the black triangle to the right of the button:

Once you have locked the button to a project, it is no longer sensitive to the selection and you
can press it to build the active TC of that project at any time.

Using this button menu you can also choose to build another TC that is not active. When you
choose the other TC it will be marked as active. After that you can press the Build Active TC
button to build it.

Build Messages
As soon as the build of the TC has been started, Model RealTime will pop-up the UML
Development console in the Console view. This is where all build messages will be printed.
You may want to pin this console to ensure that it stays open during the entire build process.

Build messages that are printed to the UML Development console may include:
• TC validation messages (same as are reported when running an explicit validation of the

TC)
• Transformation messages (e.g. warnings or errors detected during C++ code generation) –

see Model Compiler Validation Rules.
• Compiler messages
• Linker messages

You can double-click on messages in the UML Development console in order to navigate to
the location of the message. This could either be a TC, an element in the model, or it could be
somewhere in the generated C++ code.

By default, compiler and linker messages (and all other messages produced by make) are
printed directly to the UML Development console. If you prefer you can set the preference
RealTime Development – Build/Transformations – Show make log in UML Development
Console. Then such messages will instead be printed to a build log and a link to this file is

29

Important: Eclipse has an option to build projects automatically (”Build Automatically” in
the Project menu). Ensure that this option is off when building a TC from the user interface.
Otherwise the generated CDT project may not get built when building a TC, and the build will
terminate after the code generation phase.

printed in the UML Development console together with a message if the compilation failed
due to errors. For example:

Most messages also have a representation in the Problems view, and when a message in the
UML Development console (or in the Build log) is double-clicked, the corresponding problem
in the Problems view will be selected. From its context menu you can choose to navigate to
other locations where the problem can be fixed, or where to find more information about it.
You can also choose to navigate to the build log to see the context of the problem. Sometimes
this is necessary in order to understand how to fix it.

You can manually remove problems from the Problems view by deleting them. For example,
you may want to delete problems that you have looked at or fixed. When you start a new build
you may want to automatically delete all or some of the problems that already exist in the
Problems view so that it becomes easier to see the problems that are caused by that particular
build. To control what to do with the Problems view when you start a new build you should
set the preference RealTime Development – Build/Transformations - Clean Problems View
before build:
• Do not clear problem markers

Use this if you prefer to manually delete problems from the Problems view.
• Clean problem markers for all built projects

This choice will delete those problems that are reported on the projects that are built. This
includes both the source model projects (for example warnings on model elements
produced by the code generator) and the target CDT projects (for example compilation
errors). Problems reported on projects that are unrelated to the build will remain. The idea
here is that only those problems that were caused by building the same TC previously
should be removed, before the TC is built again. Any problems that remain will then
reappear as a result of the new build.

• Clean problem markers for all built projects and all CDT projects
This choice works the same as the above, but in addition problems that are reported on
other CDT projects are also removed. This may be useful if you have external C++ code
that gets included in the build, for example using C++ External Library TCs (as described
in External Libraries).

• Clean all problem markers
Use this if you want to always remove all old problems when starting a new build.

30

Building Multiple Transformation Configurations
An alternative to building a TC using the ”Build Active Transformation Configuration” button
is to invoke the command "Build..." in its Project Explorer context menu. This command also
works when you have multiple TCs selected, and is therefore in particular useful if you want
to build several unrelated TCs.

The "Build..." command brings up a dialog where you can select the TCs that you want to
build (by default those that were selected in the Project Explorer):

When you press Build all the marked TCs will be built one by one.

If you only want to run the transformation step for the TCs (i.e. only generate the code but not
build it) then you can mark the checkbox "Skip build of generated projects".

Alternative Ways to Trigger an Interactive Build
Let's go into some more detail about what happens when performing an interactive build, and
some alternative ways to trigger it.

An interactive build is controlled by an Eclipse builder called the UML Development Builder.
If you look in the properties of an Model RealTime model project you will see in the Builders
tab that the project is built using this builder.

31

The Eclipse builder framework provides user interface that allows you to invoke the UML
Development Builder on a project. For example, it provides a "Build Project" command in the
context menu of a project (available if Project – Build Automatically has been turned off).
When the UML Development Builder is asked to build an Model RealTime model project it
will look for active TCs in that project. All TCs that are marked as active will be built, one by
one.

Usually there should be no need to perform interactive builds through the general Eclipse
builder user interface. Most often there is one particular TC in the project that shall be built,
and therefore it is better to use the “Build Active Transformation Configuration” button for
building that specific TC as described previously. If the project contains multiple TCs that
should be built, the context menu command "Build..." can be used.

A special feature of an Eclipse builder is the ability to automatically build a project as soon as
it or its content changes. This behavior is controlled by the preference Project – Build
Automatically. This feature is not appropriate to use with the UML Development Builder,
especially not when a makefile is used for building generated C++ code. It is therefore
strongly recommended to have this preference turned off when building Model RealTime C++
models (it is turned off by default in Model RealTime).

Batch Build
A batch build (sometimes also called headless build, or non-GUI build) can be performed by
means of the model compiler. The model compiler is a stand-alone command line tool which
does not have any dependency to Eclipse or something that requires a user interface.
Therefore it is possible to run the model compiler without setting the DISPLAY variable on
Unix.

To perform a batch build using the model compiler you can either call it directly from the
command line, or from a script. There is a separate documentation for the model compiler
which covers all its command line options. You can find this document in the built-in Help at
Model RealTime User's Guide – Articles – Building – Model Compiler.

Perl Configuration
Model RealTime relies on Perl for some tasks within the build process. The Model RealTime
installation contains a version of Perl called rtperl which is used by default on Windows and
Linux. It is located within the plugin com.ibm.xtools.umldt.rt.core.tools. If you want or
need to use a different version of Perl, open Preferences - Run/Debug - String Substitution
and edit the variable called "rtperl".

32

Enter the full path to your Perl executable in the "Value" field (or just "perl" if you have it
accessible in your path).

Note: In older versions of Model RealTime the "rtperl" variable was set to the full path of the
rtperl executable from the installation. This means that if you open a workspace created in
such an old version, you should remove that path, especially if the old installation location
was deleted so that path no longer is valid.

Model Compiler Validation Rules
While transforming a model to C++, the model compiler checks the model against validation
rules. To learn about the model compiler validation rules in detail, see User's Guide – Articles
– Building – Model Compiler Validation Rules in the built-in Help.

Build Variants
We have already mentioned above the need to build different variants of an application. There
could be many reasons why this is needed. Few examples are given below:

• Create a debug versus a release build of the application
• Add special instrumentation to the application in order to detect run-time errors
• Build the application for different target platforms

TC inheritance can be one way to structure TCs to make it possible to build different
application variants while reducing duplication of TC properties. Use of variables or
JavaScript expressions in TC properties is another option. However, none of these
mechanisms have proven sufficient for large models with many build variants. With an
increasing number of ways to parameterize a build, the number of possible build variants
grows very quickly. Defining a new build variant may require a large number of TCs to either
be created or updated. This soon becomes tedious, and is also a usability problem for users
that have a huge number of TCs to choose from when deciding what to build.

The model compiler provides a solution for this problem that allows you to only have one set
of TCs that are common for all variants of an application that need to be built. The idea is to
only store properties that are common for all build variants in the TCs, and dynamically add
or modify the TC properties that are specific for a particular build variant. In essence this
makes it possible to create the variants of a TC dynamically at build-time without having to
manually create a TC file for each and every build variant.

The dynamic manipulation of TC properties is achieved by means of writing one or many
scripts (using JavaScript) that are run by the model compiler. Such scripts can be run either

33

https://rtist.hcldoc.com/help/index.jsp?topic=%2Fcom.ibm.xtools.rsarte.webdoc%2FArticles%2FBuilding%2FModel+Compiler+Validation+Rules.html&cp%3D27_2_0_2

just before ("pre-processing") or just after ("post-processing") the default interpretation of TC
properties. Depending on the kind of build variant you want to implement you can choose to
write "pre-processing" or "post-processing" scripts (or both). In a pre-processing script you
can for example assign values to variables that are referenced in TC properties, while in a
post-processing script you can directly modify the properties in the built TC or its
prerequisites. All modifications performed by the scripts are transient, which means that they
will never be stored in a TC file, but will only be used in the current build.

The model compiler provides a Transformation Configuration Framework (TCF) which is a
JavaScript API for working with TCs. It provides functions for reading and writing TC
properties, traversing prerequisite TCs, working with TC inheritance and much more.
Together with the built-in functionality of JavaScript this provides for a very flexible and
powerful way of dynamically manipulating TCs in order to build desired application variants.

There is also another JavaScript API, known as the Build Variant Framework (BVF), which
allows to define which build variants to make available for users when they build a TC (either
from the user interface or command-line). The idea here is that an advanced user (a build
expert) writes the scripts that implement the different build variants, and also defines the user
interface with the controls other users will see when they build a TC. Each value set for those
controls in the user interface maps to the execution of one or two scripts at build-time (pre-
process script, post-process script or both).

To enable the support for build variants, set the preference RealTime Development –
Build/Transformations – C++ – Use build variants for build configuration. Then set the Build
variants preference to reference a build variants script. This script will be interpreted by
Model RealTime when an interactive build is performed. It can use the BVF API to contribute
a custom user interface where choices can be made for defining which variant of the
application that should be built. For example:

34

Let's look at an example of what such a build variants script could look like in order to
provide a user-interface with two controls (a checkbox and a dropdown menu) that appears
when a TC is built.

let debug = {
 name: 'Debug',
 script: 'debug.js',
 control : { kind: 'checkbox' },
 defaultValue : false,
 description: 'Build for debugging'
};

let target = {
 name: 'Target',
 alternatives: [
 {
 name: 'Solaris',
 script: 'Target.js',
 args: ['Solaris'],
 description: 'Settings for Solaris target platform'
 },
 {
 name: 'Linux',
 script: 'Target.js',
 args: ['Linux'],
 defaultValue: true,
 description: 'Settings for Linux target platform'
 },
 {
 name: 'Win64',
 script: 'Target.js',
 args: ['Windows'],
 description: 'Build settings for Windows 64bit'
 }
]
}

function initBuildVariants(tc) {
 BVF.add(debug, target)
}

The function initBuildVariants is called when a TC is built (either from the Model
RealTime user interface or from the command-line). It is responsible for creating objects that
represent the build variants and adding them by calling the function add() on the predefined
BVF object. The build variant objects define two controls in the user interface. The user
interface controls are defined using JavaScript objects (debug and target). Some properties of
such an object define what the user interface control should look like (for example, if it should
be a checkbox or a drop-down list). Other properties define what should happen during the
build when that particular build variant is enabled. In the above example, the build variants
script contribute one "Debug" checkbox and one "Target" drop-down menu to the user
interface. Each of these controls is bound to the execution of a build variant script by means
of the "script" property.

Here is what the user interface will look like when you build a TC with this build variants
script enabled:

35

The controls after the separator in the Build Variants group are contributed by the build
variants script. When pressing the Build button the TC will first be processed in the usual
way. Then the scripts associated with the user interface controls will be invoked so they can
modify the TC properties in order to achieve the specified build customization. If choices are
made according to the picture above, the script "Target.js" will be invoked with the array
["Linux"] as argument (according to the "args" property for the Target object).

Each combination of choices made in this dialog defines a set of enabled build variants. We
call that set a build configuration. Even with only the two simple controls of the above
example, we have already defined 2 * 3 = 6 possible build configurations. Each build
configuration builds one specific variant of the application.

If you need to build a particular build configuration more frequently than others you can save
it by pressing the "Save As" button in the dialog. Give the build configuration a descriptive
name. For example:

Now you can build this particular build configuration simply by choosing it from the list of
build configurations in the dialog.

36

Named build configurations are also listed in the Build Active TC button menu so that you
can build them quickly. The menu shows both which TC that will be built, and which build
configuration that will be used for building it.

You can change the active build configuration either by means of the "Configure Build
Variants for ..." command in this menu, or by marking the checkbox in the build dialog:

When you build a TC with an active build configuration, the dialog with the build variants
user interface does not pop up. This means that once you have decided which build
configuration to use, you can build your TCs in the normal way without having to bother with
any extra steps.

Each build configuration has a textual representation that consists of a semicolon-separated
list of build variants, where each boolean build variant (checkbox in the user-interface) is
identified by its name, and each enumeration build variant (drop-down menu in the user
interface) is identified by its name followed by an equal sign and then followed by the name
of one of its alternatives. For example: "Debug; Target=Linux". You can use this textual
representation to specify which build configuration to use when running a command-line
build. Use the --buildConfig parameter when invoking the model compiler.

37

Build Variant and Transformation Configuration Framework APIs
To be able to write a build variants script and the scripts it references, you need to have a
basic knowledge of JavaScript. Being widely used in many applications domains it is easy to
find good tutorials about JavaScript on the web. Here is one example.

In addition to the built-in JavaScript functions you will use the Build Variant Framework API
for defining the available build variants, and the Transformation Configuration Framework
API for working with transformation configurations inside the build variant scripts. These
APIs are described in the built-in Help at Model RealTime Java APIs – Model RealTime
Transformation Developer's Guide - Reference - API Reference - Transformation
Configuration and Build Variants JavaScript API.

Debugging Build Variant Scripts
If the build variant scripts don't work as you have intended, you need to debug them. In
simple cases it may be enough to "debug" by tracing messages to the console. You can for
example use the function BVF.formatInfo() to print such messages. They will be printed to
the Build Variants console if the script runs as part of an interactive build in the UI, and as a
model compiler message if the script runs in the context of the model compiler.

Sometimes you may need to do real JavaScript debugging to find a problem in a build variant
script. One way to do that is described in the built-in Help at Model RealTime User's Guide -
Articles - Building - Build Variants - Debugging.

External Libraries
It is common to have external C++ libraries that should be linked with the final C++
application. It may be convenient to integrate the building of such an external library into the
overall build process. To do so you may use a TC which has the “Artifact type” set to “C++
External Library”. For such a TC the “Target Configuration” tab contains properties which are
used so that the generated makefile can include a target for building the external library from
its sources.

Generate make file for external CDT project allows the external library to be built from a
CDT project. If this property is set the "Build folder" property should specify a target folder
for a CDT project. When the TC is built a makefile will be generated from the CDT project
and the "Build command" should specify how to run make on that makefile in order to build
the external library.
Note that the word "external" in the name of this property just means "external to the project
that contains the TC". The CDT project is typically located in the same workspace as your
model project.

Build command specifies a command that builds the external library. For example it can be
an invocation of make with a makefile for the library.

Build folder specifies the folder where to run the build command.

Clean command specifies a command that cleans the external library. For example it can be
an invocation of make clean with a makefile for the library.

38

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide

CDT configuration name is only applicable if the setting "Generate make file for external
CDT project" is enabled. In that case it can be used for specifying the name of the CDT
configuration to build. If the "Build folder" already specifies a target folder for the CDT
project that has the same name as the configuration (which is typical), then you don't have to
specify the name of the configuration here. It will be deduced from the "Build folder" setting
instead.

Inclusion paths is a list of inclusion paths where the header files of the external library are
located. These paths will be added to the include paths in the makefile that is generated for a
TC which has the external library TC as a prerequisite.

Libraries is a list of libraries that will be added to the list of libraries in the makefile that is
generated for a TC which has the external library TC as a prerequisite. Typically you would
here enter the libraries that are produced by running the build command.

External library TCs also have another special property Include file name in its “Code
Generation” tab. It specifies an include file to be included by code that uses the external
library. At most one include file can be included for the library. If you need to include more
than that you have to create a wrapper include file which includes all the required files. The
include file for the external library will be included by the unit header (by default called
UnitName.h) for each TC which has the external library TC as a prerequisite TC.

Note that an external C++ library TC does not specify a target project.

The picture below shows an example of a C++ External Library TC which is configured to
build the library from a CDT project.

39

When this TC is built a makefile is first generated for the CDT project Pi_libraryFunc which
should be available in the workspace. The CDT configuration "Debug" will be used, since that
target folder is specified in the "Build folder" property. The makefile is processed using the
build command "$(MAKE) all" which will build the library "libPi_libraryFunc.a".

Precompiled Libraries
Some external libraries are rarely modified. You may want to avoid to rebuild such libraries
each time you build your model, and instead link directly with a precompiled library. The
precompiled library is stored in a location that is available to everyone who has to build the
model. To achieve this you may leave the "Build command" and the "Build folder" properties
empty in the "C++ External Library" TC. For example:

40

When you build an executable TC that has this TC as a prerequisite no actions will be
performed to build the precompiled library. Instead the library specified in "Libraries" will be
directly used when linking the executable. This makes the build of the executable TC faster,
since the library does not have to be built.

If the precompiled library is built from a UML model you may specify model elements in its
"Sources" property. The code generator will automatically generate #includes for all classes
mentioned there, if the property Generate class inclusions is enabled. The #includes are
generated in C++ implementation files that are generated from TCs that have the external
library TC as a prerequisite, and that contain model elements which use the source classes.

You also need another TC (a "C++ Library" TC) which can be used to build the precompiled
library, in case the model has been changed. A typical workflow is that one person changes
the model for the precompiled library and then builds it using the "C++ Library" TC. Then he
takes the resulting library file ("library.a" in the above example) and puts it in the location
which is specified in the "Libraries" setting of the precompiled library TC. This location is
typically a shared network folder, or a location in the CM system. Thereby the precompiled
library becomes available for other users who need to build a model that uses it.

41

External Constants
By using different ”C++ External Library” TCs in different builds it is possible to build
multiple variations of an application. The interface of the external library remains the same,
but its implementation can vary between different builds, for example depending on target
platform or build configuration (debug / release etc).

Sometimes it's not enough to only let the implementation of a library differ. The different
variations of an application may also need to be built using different values for certain
constants that are used in the model. For example, the multiplicity of a replicated port may be
specified by means of a constant that should have different values in different variations of the
application. For this usecase external constants can be used.

An external constant is a constant that is used in the model, but its value is not defined in the
model. Instead, the value is defined using a ”C++ External Library” TC (and can therefore be
different for different builds of the application).

The “Target Configuration” tab contains properties that can be used for defining the values of
external constants that are used in the model. The easiest way to define the values is to write
them in the Constants field using a simple “NAME = VALUE” syntax. The VALUE can be
any constant expression, and it will be evaluated by the model compiler when building the
model. The expression may contain references to user-defined variables (see User-defined
Variables), and you may use C++ style comments (// …) as necessary. For example:

POOL_SIZE = 100
// MYSIZE is a user-defined variable
PORT_BUF = $(MYSIZE) * 2

It's also possible to provide values for the external constants in a file. The file can either be a
C/C++ header file (with the file extension .h) or it can be a plain text file (with any other file
extension). In the latter case the text file should use the same syntax as is used in the
Constants field in the TC. For a C/C++ header file regular C/C++ syntax should be used, and
constants can then be defined either as macros or const definitions. For example:

// Constants defined in a C/C++ header file
#define POOL_SIZE 200
const int FILE_CONST = 13;

A file that defines external constants is referenced from the Constants field in the “C++
External Library” TC. You may either use an absolute or a workspace relative path. In the
latter case the path should be preceded by the character '@'. For example:

// Workspace relative path
@/SomeCppProject/const.h
// Absolute path
C:\temp\constants.txt

If the same constant is defined multiple times, then the last definition will be used to obtain its
value.

42

A “C++ External Library” TC can bring in values for external constants that are defined in
another “C++ External Library” TC by adding that TC as a prerequisite. If necessary it can
override the values for some of those external constants by providing different values for
them.

Defining External Constants Programmatically
A “C++ External Library” TC has a setting Constant provider which can refer to a plugin in
order to provide values for external constants programmatically. The plugin should have a
class with a static method that will be called to obtain the values for the external constants.
The method should have the following signature:

public static Map<String, String> void NAME(
ITransformContext context, // current transformation context
String transformURI, // URI of TC
IProgressMonitor monitor) // current progress monitor

The implementation of this method should return a map which provides the names of the
external constants and their corresponding values.

You should refer to this method from the “Constant provider” field using the syntax

<qualified plugin name>/<qualified class name>/<method name>

For example:

com.acme.extConstantPlugin/com.acme.ExtConstantClass/getExternalConstants

Note that constant values provided by a constant provider plugin override values provided by
the Constants property.

Clean
Related to building a TC is the ability to clean it. Cleaning a TC can be done in two ways:
1. By removing the entire target project for the TC. All files that were generated when

building the TC will be deleted, both source files and binaries.
2. By cleaning the target project for the TC. This removes all files (typically binaries) that

were produced when building the target project. But the target project itself and the
source files it contains will not be deleted.

To clean a TC invoke the ”Clean...” command in its context menu. The following dialog will
appear:

43

When you press OK all selected TCs (and their prerequisite TCs, both direct and indirect
prerequisites) will be cleaned by removing their target projects. If you want to keep the target
projects and generated source files and just clean the binaries, you can mark the checkbox
”Clean binaries only”. Then the TCs will be cleaned by cleaning their target projects. For a
target project that has a generated makefile this means that make clean will be called on that
makefile.

Note that in order to clean an external project, the "Clean command" property of its TC has to
be set. Otherwise Model RealTime does not know how to clean an external library, and you
have to do this manually (for example by cleaning the CDT project that builds the external
library, or to invoke make clean on its makefile).

If, for some reason, the target project of a TC does not exist in the workspace, but it exists on
the file system, then a dialog will appear when cleaning the TC:

If you answer Yes, the target project folder will be deleted from the file system. If the target
project contains subfolders there will popup one such dialog for each subfolder. To apply the
same choice to all subfolders (either delete the subfolders or keep them) you can mark the
checkbox to remember your decision before you press the Yes or No button.

In the Clean dialog there is also an option ”Build selected transformation configuration after
clean”. If you select this option then the selected TC will be built immediately after the
cleaning is finished.

44

In the context menu of an RT model project there is a command ”Clean transformation
configurations...” which can be used in order to clean all active TCs in that project. The same
dialog as shown above will appear, and each active TC will be marked to become cleaned.

The clean command is also available as a menu choice in the ”Build Active Transformation
Configuration” button menu.

From here it will clean the active TC (the one with a checkmark in front of it). If the button
has been locked to a project the clean command will clean the active TC in that project. If
there is no active TC set a dialog will popup to let you specify which TC to activate and clean.

As can be seen in the picture above the "Clean transformation configurations" command is
also available in this menu. It is useful to invoke it from here when you want to clean TCs
from many or all of the projects in the workspace. This is more convenient than to select all
the projects in the Project Explorer and then invoke the command from the context menu.

As discussed in Alternative Ways to Trigger an Interactive Build Eclipse provides a common
user interface for performing build of projects. The conclusion there was that this common
user interface provides no benefits compared to building TCs directly using the ”Build Active
Transformation Configuration” button. In the same way Eclipse provides a common user
interface for cleaning (Project – Clean...). If you attempt to clean an RT model project using
this user interface nothing will happen.

You can quickly clean the whole workspace by using the Remove All Generated Projects
toolbar button or selecting the command File - Remove All Generated Projects. It will
remove all generated target projects from the workspace and delete them from the file system.

Code Preview
Sometimes it can be useful to get a preview of what the generated code will look like, without
building a TC in the usual way. For example, you may want to quickly see what the generated
code for a certain model element, such as a class, will look like. Such a code preview can help
you understand how changes made in the model will affect the generated code.

To generate a code preview for one (or several) model elements use the command Generate
Code Preview from the toolbar or the Project Explorer context menu. The command has the
default keybinding Alt + Shift + E and is available on all model elements that get translated to

45

their own C++ files, for example a class, capsule or protocol. A dialog appears where you can
specify where to place the code preview.

By default the code preview will be placed in a folder called "Code Preview" in the Eclipse
project that contains the selected elements. If you have selected elements from multiple
projects, the project of the first element will be used. You can change the default code preview
location in the preferences. It's also possible to specify a subfolder. This can for example be
useful if you want to give a meaningful name to the code preview location that describes what
it contains.

When you press the OK button the model compiler will be invoked to generate the code
preview for the selected elements. Note that in this case the model compiler does not use a
transformation configuration for generating the code. This means you can get a code preview
even before you have created your TCs, and it also makes code generation faster. However,
there will be some minor differences in a code preview compared to the real generated code
because of this. One example is the inclusion of the Unit name header file. Since the name of
the unit header file is defined in the TC it will look like this in a code preview:

#include <.unitName.h>

Usually such differences don't matter since you are not supposed to compare a code preview
with the real generated code, but rather with another code preview.

Using Code Preview for Code Comparison
If you re-generate a code preview into the same location twice, all files that are different from
before will be suffixed with the "~" character. Here is an example of what it can look like for
a capsule "TOP":

46

Here we can see that the capsule was changed in a way that affected the generated header file,
but not the implementation file.
You can utilize this feature for quickly understanding how some changes you did to a model
element will affect the code that is generated for it. Follow these steps:

1. Generate a code preview for the element
2. Make some changes to the element
3. Generate another code preview for the element into the same location
4. Select the new and old version of the generated file (TOP.h and TOP.h~ in the above

example), and perform the context menu command Compare With - Each Other. In
the Compare editor that opens you can easily see how the changes you made to the
model element have impacted the generated code.

Another similar scenario is to compare two versions of a model element to see how the
generated code for those two versions differs. For example, the versions can be stored on two
different branches in Git. Follow these steps:

1. Checkout one of the branches and generate a code preview for the element. Specify
the branch name (for example "ver1") as the subfolder name.

2. Checkout the other branch and repeat the same procedure, this time using the other
branch name as the subfolder name (for example "ver2").

3. Your "Code Preview" folder will now contain two subfolders "ver1" and "ver2". Select
these folders and perform the context menu command Compare With - Each Other.
The Compare editor will show how the generated code differs between these two
versions.

Generating Code Preview for a Transformation Configuration
The Generate Code Preview command is also available in the context menu of a TC. In this
case the TC will be used by the model compiler for generating the code preview, which means
the code preview will be identical to the code that will be generated when the TC is built.

Generating code preview for a TC is convenient when you want to get a preview of all files
that will be generated by that TC when it's built. You can for example use it for comparing
one version of a TC and model with another, as explained in Using Code Preview for Code
Comparison.

The dialog for generating code preview for a TC has two additional checkboxes which let you
choose if you want to also include generated makefiles into the preview:

47

Comparing the makefiles for two versions of a TC can be a useful tool for troubleshooting
build problems.

If the preference for using a build variant script is set, the above dialog will also contain the
user interface provided by the build variant script so that you can set the build variant
properties (i.e. build configuration) in the same way as when you build the TC. The values
you set for the build variant properties can influence what the generated code will look like.

Removing Code Preview
When you no longer need a code preview you can simply delete it from the Project Explorer,
or delete the folder from the file system and refresh the Project Explorer. There is also a
useful command File - Remove All Code Preview that will remove all code preview from
your workspace. It can be convenient if you have generated lots of code preview and want to
remove it all at once.

48

	Building C++ Applications with
	DevOps Model RealTime
	Introduction
	Transformation Configurations
	Transformation Configuration Properties
	Main tab
	References tab
	Code Generation tab
	Target Configuration tab
	Threads tab
	Code tab

	Dynamic Properties in Transformation Configurations
	Pre-defined Variables
	User-defined Variables
	JavaScript Expressions

	Model Element References in Transformation Configurations
	Creating Transformation Configurations
	Transformation Configuration Inheritance
	Prerequisite Transformation Configurations
	Active Transformation Configurations
	Managing the Sources of a Transformation Configuration
	Organize Sources
	Detect Source Dependencies Automatically
	Context Sensitive Library Builds
	Automated Source Management and External Code

	Building Generated Code
	Makefile Generation

	Interactive Build
	Build Messages
	Building Multiple Transformation Configurations
	Alternative Ways to Trigger an Interactive Build

	Batch Build
	Perl Configuration
	Model Compiler Validation Rules
	Build Variants
	Build Variant and Transformation Configuration Framework APIs
	Debugging Build Variant Scripts

	External Libraries
	Precompiled Libraries
	External Constants
	Defining External Constants Programmatically

	Clean
	Code Preview
	Using Code Preview for Code Comparison
	Generating Code Preview for a Transformation Configuration
	Removing Code Preview

