
DevOps Model RealTime

Git Integration

Author: Anders Ek
HCL

INTRODUCTION...3

EGIT BRIEF OVERVIEW..3

GETTING STARTED...6

ECLIPSE PROJECTS AND GIT REPOSITORIES...6
ACCESSING A REMOTE GIT REPOSITORY..7
IMPORTING AN EXISTING REPOSITORY..8
STORING AN EXISTING PROJECT IN GIT..10

GIT STAGING – CHECKING WORK DONE AND COMMITTING THE RESULT.................................11

GIT STAGING VIEW...12
INVESTIGATING CHANGES...13
COMMITTING CHANGES..13
AMENDING CHANGES TO PREVIOUS COMMIT...13

GIT HISTORY – INVESTIGATING COMMITS AND BRANCHES...14

THE HISTORY VIEW..14
FILTERING THE HISTORY VIEW..15
SEARCHING THE HISTORY VIEW..16
COMPARING FROM HISTORY VIEW – GIT TREE COMPARE VIEW..17
USING THE GIT REPOSITORIES VIEW TO INVESTIGATE BRANCHES...17

CHECKING OUT AND CREATING BRANCHES..18

CHECK OUT A BRANCH...18
CREATE A NEW BRANCH...19
USING THE GIT REPOSITORIES VIEW TO WORK WITH BRANCHES...20

MERGE AND REBASE...20

MERGE..21
REBASE...23
REWRITE HISTORY USING SQUASH MERGE...24
MERGING A SPECIFIC COMMIT USING CHERRY PICK...26
INTERACTIVE REBASE – ADVANCED REWRITING OF HISTORY...27

RESOLVING CONFLICTS...29

MERGE CONFLICTS...29
REBASE CONFLICTS...31

WORKING WITH REMOTE REPOSITORIES..33

REMOTE REPOSITORIES..33

1

REMOTE TRACKING BRANCHES...34
UPDATE FROM REMOTE REPOSITORIES: FETCH..35
UPSTREAM CONFIGURATIONS..36
UPDATE FROM REMOTE REPOSITORIES: PULL..37
UPDATING REMOTE REPOSITORIES WITH LOCAL CHANGES USING PUSH...37

COLLABORATING WITHIN A TEAM USING REMOTE BRANCHES..38

CREATING A REMOTE BRANCH..38
CONFIGURATION OF AND BASIC OPERATIONS FOR REMOTE BRANCHES..39

WORKING WITH REMOTE REPOSITORIES USING GERRIT REVIEW SUPPORT...........................39

CLONING AND INITIATING A REPOSITORY FROM GERRIT..39
GERRIT BASICS..41
BASIC OPERATIONS WHEN USING A GERRIT BASED REPOSITORY..41
PUSH FOR REVIEW..41
PERFORM A REVIEW USING MYLYN...43

Installing and Configuring Mylyn...43
Reviewing a Change Request in Mylyn...46

USING AMEND COMMIT TO FIX REVIEW COMMENTS...48

OTHER COMMON SCENARIOS – STASHING, RESETTING AND TAGGING......................................49

STASHING – TEMPORARILY SAVING YOUR CHANGES..49
RESET – REVERTING YOUR CHANGES..51
TAGGING – MARKING IMPORTANT COMMITS...52

INTEGRATION WITH COMMAND LINE GIT..53

INVOCATION FROM COMMAND LINE...53
MERGE INTEGRATION...54
GIT HOOKS..55

This document describes how to handle models developed with DevOps Model RealTime us-
ing Git version management.

The document was last updated for Model RealTime 10.2 (integrating with EGit 4.8.1). Most
screen shots were captured on the Windows platform.

2

Introduction
Git is one of the most popular source code management systems used today. In this document
we will look at how to use Model RealTime together with Git. The focus is on model aspects
and it assumes a basic knowledge of Git.
Good general purpose introductions to Git are for example:

• https://git-scm.com/book/en/v2/
◦ A good general purpose on-line book about Git

• https://www.kernel.org/pub/software/scm/git/docs/gittutorial.html
◦ A good getting started tutorial that describes basic work flows

• https://www.kernel.org/pub/software/scm/git/docs/user-manual.html
◦ Git user manual

Model RealTime can be used with Git in two different modes:
• Using the command line Git interface described by the links above
• Using the Eclipse integration (EGit)

EGit is a special purpose rewrite of Git in Java that enables convenient access to Git features
from within the Eclipse/Model RealTime graphical user interface. A good introduction to EGit
is the EGit user guide available at http://wiki.eclipse.org/EGit/User_Guide.
The command line Git and the EGit Eclipse integration have different benefits and draw-
backs:

• Command line Git is fast and efficient, but can be a daunting for new users. It also re-
quires an environment specific configuration to work for model files.

• EGit is in most situations more convenient and easy to use than the command line in-
terface since it is available directly in the Model RealTime modeling environment but
has slower performance than the command line implementation.

In this document we will look at both variants and it is also possible to use both in combina-
tion.

EGit Brief Overview
Before looking into different workflows in more detail we will take a brief tour of the most
common EGit views you will use. There are three main views added or used by EGit:

• Git Staging View
• History View
• Git Repositories View

The first view you are likely to encounter is the Git Staging View:

3

http://wiki.eclipse.org/EGit/User_Guide
https://www.kernel.org/pub/software/scm/git/docs/user-manual.html
https://www.kernel.org/pub/software/scm/git/docs/gittutorial.html
https://git-scm.com/book/en/v2/

You will use the Git Staging View to understand the state of your working tree, see what files
have changed etc. and also to add your changes to the Git repository.

We will look in more detail into the different widgets and how to work with the view in the
section Git Staging – Checking work done and committing the result.

The History view is not added by Egit, but is used also for other source code management in-
tegrations. However, EGit provides the contents of this view when you use Git.

You will use the History view whenever you are interested in the previous actions done to
your model. It provides information about who did what in a searchable graphical view sorted
by date. We will look into this view more in the section Git History – Investigating Commits
and Branches.

The third main view provided by EGit is the Git Repositories view.

4

The Git Repositories view gives a summary of key aspects of the Git repositories you cur-
rently are working with inside Model RealTime. It provides information about the branches
that exist (including which branch you currently are working on), what remote repositories
you have configured and where in the file system each repository is located. We will en-
counter the Git Repositories view in many contexts in this document, including in the section
Git History – Investigating Commits and Branches and in the section Checking Out and Cre-
ating Branches.

Git also provides a top-level menu and a toolbar.

This menu and toolbar are not visible by default in the UML Development perspective. To
make them visible invoke the command Window – Perspective – Customize Perspective. In
the Action Set Availability tab mark Git and Git Navigation Actions.

5

The top-level Git menu and toolbar are strictly speaking not necessary, since all commands
are available in the different EGit views and in context menus. However, in some situations
they can be convenient.

You can tell if you have EGit installed as part of Model RealTime in a number of different
ways. One very obvious way is that the Project Explorer by default annotates all projects
stored in Git with the repository and current branch.

Another difference when you have EGit installed is that when you perform any Git action that
will change the working tree contents, like for example when loading a new workspace or
when switching branches in Git, then EGit will update the status information. This may typi-
cally take a couple of seconds and you can see the status bar (at the bottom of the Model Real-
Time window) indicating that something is happening. For example when checking out a
branch you might see the following message:

Getting Started

Eclipse Projects and Git Repositories
Git is a distributed version management system, that relies on a local repository storing infor-
mation about the different versions of files and directories. A Git repository is a directory con-
taining a copy of all files and folders plus a special top level directory called “.git”. This spe-
cial directory contains the version information for all files and directories in the repository.
There are several different schemes available when combining Git with Eclipse projects, but
in general it is recommended to have the “.git” repository directory outside of the Eclipse
project structure. A typical structure is thus:

6

• MyApplication: The root folder of the repository.
◦ .git: The Git version information directory
◦ Project1: First Eclipse project
◦ Project2: Second Eclipse project

A structure similar to this is expected by most commands in EGit and will improve the perfor-
mance of the tools.

Accessing a Remote Git Repository
A common first step is often to get access to an existing remote Git repository. This can be
done from the command line using the clone command:
git clone <uri> will create a local folder containing a Git managed file system including
a .git folder. It is often a good idea to have one folder on the local file system containing all
Git repositories.

An example structure is the following:
• /home/user/git

◦ gitRepo1
◦ gitRepo2

Whenever you need to access another remote Git repository just start a command shell in the
directory corresponding to /home/user/git and do a git clone <url>.

It is also possible (and convenient) to clone the repository from inside Model RealTime. This
can be done in the Git Repository view.

The Clone Git Repositories dialog that appears makes it possible to specify the source of the
repository. The easiest way to fill in this dialog is to simply paste a URL into the top URI
field. Then most of the other fields will be populated automatically. For example:

7

On the wizard pages that follow you can specify where in the local file system the repository
will be located and also give a possibility to import any contained Eclipse projects into the
current workspace.

Importing an Existing Repository
To get access to an existing local Git repository from Model RealTime we can use the com-
mand File - Import... and choose ”Projects from Git”:

8

In the ”Import Projects from Git” dialog press the Add button, and enter the path to where you
store your Git repositories.

Select the Git repository you want to import and then press Finish. Then proceed to the next
page in the import wizard where you can choose how you want to import the repository. If the
Git repository contains one or many Eclipse projects you typically want to choose ”Import ex-
isting Eclipse projects”.

9

The final wizard page shows you the list of found Eclipse projects that will be imported. Press
Finish to import them. Note that imported projects will be referenced from your workspace
but will remain stored in the Git repository directory. This is important to remember since you
sometimes may use Git commands from the command line and they need to be invoked in the
Git repository in the file system.

Storing an Existing Project in Git
If you have an existing local Model RealTime project that you would like to store in a Git
repository, the easiest way is to use the Team - Share Project command in the context menu of
an Model RealTime project. If you have support for multiple versioning systems a dialog will
ask you which one to use. Choose ”Git” as the repository type and press Next to configure the
Git repository to use.

10

In the “Configure Git Repository” dialog choose an existing Git repository in the drop down
menu, or create a new one by pressing the Create button. Note that it’s generally not recom-
mended to mark the checkbox to create the repository in the parent folder of the project. See
the tooltip of the checkbox for more information.

Assuming that you specify a new Git repository to be used for storing your project, the fol-
lowing will happen when you press the Finish button:

• A new Git repository will be created and initialized in the specified location
• Your project will be moved in the file system from your workspace location to the Git

repository location
• Your project will be re-imported into Model RealTime from the new location

You are now ready to start managing the project files using Git and EGit features. Note that
one thing that does NOT happen automatically is to commit an initial version of the files to
Git. See the discussion on the Git Staging View below for more information on how to ac-
complish this.

Git Staging – Checking work done and committing the re-
sult
When working with Git you frequently want to check the current status of your changed files.
Typically you want to know:

– What in the model has been changed?
– What was the change?
– What is added to the Git index, ready to be committed?

The index concept in Git can be a bit confusing for new users, but essentially it is used to
manage the Git representation of what will be committed to the Git history. From a practical
point of view a file (or directory) in a Git managed file system can be in three modes:

• Part of the local working directory. This is the version of the file that you can see and
operate on using e.g. Model RealTime.

11

• Part of the Git index. This is nothing you typically will operate on, but is a temporary
”staging area” defining what will be committed to the Git history.

• Part of a commit. This forms the version history of the files and are from most practi-
cal points of view read-only.

If using Git from command line the most commonly used command in this context is the git
status command. This will print information about what files in your local working direc-
tory have been added or modified. It will also tell you what changes you currently have added
to the index. Similar information can be found within Model RealTime using the Git Staging
View.

Git Staging View
You can access the Git Staging View using the Window - Show View - Other... command.

The Git Staging View has two main widgets:
• Unstaged Changes

This is a list of files that have been changed in the local working directory
• Staged Changes

This is the list of files that have been changed and added to the Git index. These files
will be committed to the Git history when pressing the Commit button in the view.

12

Investigating Changes
To review the changes you can simply double click the file. If it is a model file the Compare
editor will appear and show the changes.
See the document Comparing and Merging Models for more information about how to use the
Compare editor.

Committing Changes
To be able to commit your changes you first need to ”stage” them, i.e. add them to the Git in-
dex. This is done simply by dragging the files from the ”Unstaged Changes” list to the
”Staged Changes” list. If you change your mind you can easily ”unstage” them by dragging
them in the other direction.

To commit the changes to Git simply press the Commit button, after describing the changes
with a comment in the ”Commit Message” area.

13

https://rtist.hcldoc.com/help/topic/com.ibm.xtools.rsarte.webdoc/pdf/Model%20RealTime%20CompareMerge.pdf

Amending Changes to Previous Commit
Usually when committing your changes you will create a new item in the version history of
the repository (such an item is usually called a commit). However, it is possible to instead
modify the previous commit. You can do this by clicking the Amend button.

The visible result is that you get back the text in the Commit Message field for the previous
commit. You can then edit the text so it reflects also the current changes you are about to com-
mit. When you press the Commit button a new commit will not be added to the history. In-
stead, the previous commit will be amended to include your changes. This can be very useful
if you forgot to include some changes in what was already committed, or if you committed
some changes by mistake and want to revert them.

Git History – Investigating Commits and Branches
EGit uses the Eclipse History view to let you investigate the version history of a Git reposi-
tory.

The History View
The simplest way to show the History view is to select a Git managed project in the Project
Explorer and perform the context menu command Team - Show in History.

The History view has three main parts:
• The version history (top-most part)
• The file list (bottom right)
• The commit details (bottom left)

The basic workflow in the view is to select a specific commit in the version history and in-
spect the details using the file list and commit details parts.

14

To look at the changes for a specific file in the selected commit use the Compare commands
available in the context menu.

”Compare with Previous Version” compares the selected version of the file with its previous
version. Only that specific file is compared, which means that this is a so called file-by-file
compare operation.

”Compare with Working Tree” compares the selected version of the file with its current ver-
sion in the Git working tree (i.e. the version you see in your Model RealTime workspace). By
default a dialog will appear to let you choose how to perform this comparison:

• File-by-file compare compares only the selected file.
• Logical model compare compares all the files that are part of the same logical model

(i.e. one .emx file and zero to many .efx files).
• Closure compare compares all the files that are part of the workspace.

See the document Comparing and Merging Models for more information about the different
kinds of compares.

Filtering the History View
Several of the toolbar buttons in the History view are worth noticing, since you most likely
will need to use them in your daily work.

If the version history does not show what you expect to see, the reason is usually that the fil-
tering is too narrow. The basics of the filtering in the History view is the focus element. What
you see in the view is always filtered with respect to the element shown in the top left part of
the view.

15

https://rtist.hcldoc.com/help/topic/com.ibm.xtools.rsarte.webdoc/pdf/Model%20RealTime%20CompareMerge.pdf

The filtering is controlled by buttons both with respect to repository elements and branches.
To show as much as possible select both the repository scope button and the Show all
Branches and Tags button.

Searching the History View
Another feature of the History view is the search possibility. You can start this by clicking on
the ”Show Find Toolbar” button.

This makes the Find toolbar visible in the toolbar:

If you type something in the input box, a matching commit will be selected in the history and
you can use the Next/Previous buttons to move to following or preceding matching commits.

The button menu next to the Next/Previous buttons allows you to define what columns in the
commit history to search and if you want a case sensitive or case insensitive search.

16

Comparing from History View – Git Tree Compare View
If you select two commits in the History view you will see a command ”Compare with Each
Other in Tree” in the context menu.

This command takes you to the Git Tree Compare View. This view shows the difference be-
tween the two selected commits in terms of what files (or directories) that have been added,
removed or modified.

If you click on the ”Compare mode” button in the toolbar

you can then trigger compare sessions for the individual files by double-clicking on them.
These compare sessions are always file-by-file.

However, if you just select one commit in the History view, and perform the context menu
command ”Compare with Workspace”, the Git Tree Compare View will open in a mode
where it shows the differences between the selected commit and what you currently have in
the workspace.

17

In this case double-clicking on a file will open the ”Select kind of compare” dialog that allows
you to expand the compare operation to logical model or closure compare.

Using the Git Repositories View to Investigate Branches
If you only are interested in an overview of the available branches and not the details of the
history, then the Git Repositories view is a good alternative to using the History view. It pro-
vides a very concise description of what branches exist in the Git repository and which one
you have currently checked out.

You can show the Git Repositories view from the context menu of a Git managed project in
the Project Explorer by the command Team - Show in Repositories View.

To see your local branches expand Branches – Local.

The branch with a small check-box is the branch you have currently checked out. It is also
shown in brackets after the project name (both in this view and in the Project Explorer).

Checking Out and Creating Branches
To change the contents of your working directory to something from the Git history you need
to check out a branch.

Check Out a Branch
It is possible to check out an existing branch both from command line and from the Model
RealTime user interface.

From command line the steps are typically the following:

• git branch
This command lists the available branches

• git checkout <branch>
This command replaces the contents of the working directory with the version in the
specified branch. It also tells Git to use that branch as the starting point for whatever
Git operations you will perform, such as committing new or updated files.

Note! If you check out a branch from the command line you need to make sure that you re-
fresh the Model RealTime workspace before working with the loaded models to avoid prob-
lems. You can refresh the workspace using the File - Refresh Workspace command. This will

18

reload any model files you have opened and make sure that the version from the new branch
is loaded.

From the graphical user interface the most convenient way to checkout a branch is the History
view. If you are looking for a specific commit you can use the Find Toolbar to search for it;
otherwise just browse the history for what you are looking for.

The currently checked out branch is shown using bold characters and the current commit also
has the indication ”HEAD”. To checkout a different branch, select a commit with a branch
(shown with a green box in front of the commit message) and then use the command ”Check-
out” that is available in the context menu of the History view.

This will replace the contents of the working directory with the contents of the selected
branch and also inform Git that this is the current commit, as indicated by ”HEAD”.

You can use the "Checkout" command also on commits that are not on a branch. Thereby you
can view the contents of that commit. However, you should not modify the model in this state
since there is no branch where your changes could be committed. A warning dialog will ap-
pear to inform about this:

When you perform a "Checkout" from the user interface the workspace will automatically be
refreshed and there is no need to use the File - Refresh Workspace command.

Create a New Branch
To create a new branch from the History view, select the commit from where you want the
new branch to start, and then perform the context menu command ”Create Branch”.

19

A dialog will prompt you for a name of the new branch. Leave the checkbox "Checkout new
branch" marked if you want the new branch to be checked out.

From the command line you can accomplish the same thing by means of the command git
checkout -b <branch>.

Using the Git Repositories View to Work with Branches
You can also checkout branches from the Git Repositories view. Right-click on a local branch
and perform the "Checkout" command.

The context menu also contains commands for creating and deleting branches. Note that you
cannot delete the branch that is currently checked out.

Merge and Rebase
A good workflow in Git is to do most work on specific branches (often called "feature
branches") and not directly on the master branch. Thereby your changes are isolated from the
changes of others until they are ready to be delivered to the master branch.

20

While you are working on a feature branch you often want to incorporate changes done on the
master branch (or another branch to which you plan to deliver your changes when they are
ready). This is done using the Merge and Rebase features of Git. Both these commands will
result in you having all changes from the master branch available on your working branch.
The main difference between Merge and Rebase is in the details of how the resulting Git his-
tory will look.

• If using Merge the changes on the master branch will be applied as one additional
change after the changes you have done so far on your branch. In the history you will
get a new commit with the changes from the master branch, but the branch otherwise
looks the same. That is, your changes come before the changes from the master
branch.

• If using Rebase the changes you have done on your branch will be re-applied to the
master branch, after all other changes done on this branch. In the history it will appear
as if your branch started at a new later point on the master branch (i.e. it was rebased).
That is, your changes come after the changes from the master branch.

Both Merge and Rebase can be performed both from the Model RealTime user interface and
from the command line.

Merge
Let's look at a simple merge scenario. Assume that you are working on a feature branch "fea-
ture1" with the following simple history:

Here we can see that since we created the feature branch (on commit "Another mod") another
commit ("Retyped attribute") has been delivered to the master branch. We want to incorporate
that change on our feature branch so we can test that it works well with the changes made on
the feature branch.

Let's first do this using the Merge command. Merge can be invoked from the History view.
Make sure you have the target branch (feature1) checked out, then select the source branch
(master) and perform the "Merge" command from the context menu.

21

If you haven't changed the preferences in Team - RSx EGit Integration for "Merge kind selec-
tion" you will now be prompted by a dialog about how to perform the merge.

• File-by-file merge merges all files that need to be merged using one merge session for
each file.

• Logical model compare groups files that are part of the same logical model, and
merges these groups of files in one merge session per logical model.

• Closure compare merges all files in a single merge session.

In most cases file-by-file merge is sufficient, and it also has the best performance. However, if
you have done refactorings then the other options can be considered.

See the document Comparing and Merging Models for more information about the different
kinds of merge.

The ”Auto import modified projects” is a useful feature if you only have a small part of the
complete model loaded in your workspace. If you select this option all projects that are modi-
fied will be automatically imported into your workspace. This allows you to inspect the
changes that were done after the merge is completed.

The merge operation itself is a silent operation that ends with a dialog showing the result.

22

https://rtist.hcldoc.com/help/topic/com.ibm.xtools.rsarte.webdoc/pdf/Model%20RealTime%20CompareMerge.pdf

If there are no conflicts the new and changed files are committed and the History view now
looks like this:

The same merge can also be done from command line using the command git merge
<source-branch>. However, do not merge from command line if Model RealTime has
not been added to Git as a merge handler. Doing command line merges without adding
Model RealTime as a merge handler can often result in corrupted models. See section Inte-
grating Model RealTime with Command Line Git for more information about how to inte-
grate Model RealTime with Git command line merge. There you can also find the details
about which merge mode that will be used in this case.

Rebase
Now let's use the Rebase command instead for introducing the change from the master branch
onto the feature branch. If you have performed a Merge but realize that you should have done
a Rebase instead, you can easily revert the merge by right-clicking on the previous commit in
the History view and run the context menu command Reset - Hard.

After resetting the merge commit we are back to the state prior to the merge, and can now in-
stead use the Rebase command. With the target branch (feature1) checked out, select the
source branch (master) and perform the "Rebase on" command in the context menu.

23

https://rtist.hcldoc.com/help/topic/com.ibm.xtools.rsarte.webdoc/pdf/ModelRealTime%20Git%20Integration.pdf#Integrating%20Model%20RealTime%20with%20Command%20Line%20Git%7Coutline
https://rtist.hcldoc.com/help/topic/com.ibm.xtools.rsarte.webdoc/pdf/ModelRealTime%20Git%20Integration.pdf#Integrating%20Model%20RealTime%20with%20Command%20Line%20Git%7Coutline

Just as when merging, you will be prompted to choose the merge type. After that a dialog ap-
pears with the rebase result.

The resulting history shows that instead of merging the changes from the master branch to the
feature branch, the changes you did on the feature branch have been re-applied onto the
changes from the master branch. The base of the feature branch is now the "Retyped attribute"
commit, i.e. it was rebased from the "Another mod" commit which was its previous base.

You can also perform rebase from the command line. The command to use is git rebase
<source-branch> to rebase the currently checked out branch on the master branch. Since
rebasing may require models to be merged, the same warning applies as for the Merge com-
mand. Do not invoke Git rebase for Model RealTime model files without a proper inte-
gration into Git merge handling.

Rebase is a possibility to create a nice and simple History view and is safe to use on local
branches. However, be very careful if using rebase on a branch that is shared with other
team members (see Collaborating within a Team using Remote Branches). If someone
else has downloaded the branch and have it in their local repository, Rebase will cause
problems. So, if you work in a team and share branches, avoid rebase, or make sure to
coordinate the rebase so everybody involved will clone a new copy of the repository after-
wards.

24

Rewrite History using Squash Merge
In a large organization, and as time goes by, it becomes increasingly important to have a rea-
sonably simple version history with understandable commits. Often, the granularity of com-
mits on a feature branch is smaller than what we would like to have on the master branch. To
overcome this problem Git provides a possibility to rewrite history during merge and collapse
several commits into one commit. This is done using Squash Merge and is typically done
when merging changes from a feature branch to the master branch (i.e. when your feature is
ready to be delivered).

As an example, assume that we have implemented a feature on a ”feature1” branch using
three commits, and feel that the feature is ready to be delivered to the master branch.

To merge our changes to the master branch as a single commit we can perform a merge from
the Git Repositories view. First checkout the master branch, then select the feature branch and
perform the Merge command from the context menu.

In the dialog that appears make sure to set the "Squash" merge option.

25

The result after the merge is that all changes from our feature branch are merged to the master
branch, but the result is not committed. This give us an opportunity to commit the changes
ourselves, using a suitable commit message that describes the changes as a whole.

This results in the following history:

26

Note that others in your team will only see your changes as a single commit on the master
branch, since they will not see your feature branch (unless it is explicitly pushed to the central
repository and pulled by others).

Merging a Specific Commit using Cherry Pick
Sometimes you may want to merge only one specific commit from another branch onto your
current branch, rather than all commits on that branch. Git supports this through the Cherry
Pick command. In Model RealTime we can cherry pick a commit from the History view.

Assume we are working on a maintenance branch where we want to include a few important
bug fixes. One of the bug fixes we would like to include happen to be already delivered on a
feature branch "feature1" in a commit "Yet another fix".

To cherry pick this commit into the maintenance branch we select the "Yet another fix" com-
mit and perform the command "Cherry Pick" from the context menu.

27

As for the other merge commands we will be prompted to choose the kind of merge to use.
The selected commit will be merged into the maintenance branch, leading to the following
history:

Interactive Rebase – Advanced Rewriting of History
Interactive Rebase is an advanced Git command that combines a regular rebase with squash
style merge and some aspects of cherry pick. You can use this as a convenient short-cut if you
want to re-apply a series of commits (like in a regular rebase), but in the process also want to
change the commit history (like a squash merge), selectively include or not include specific
commits (slightly similar to a cherry pick) and even change some of the commits (like an
amend commit operation).

You start an interactive rebase by checking out the branch you want to modify. Then use the
History view to select the commit from where you want to change the commit history and
perform the ”Rebase Interactive” command from the context menu.

Here we will perform an interactive rebase to rewrite the history of the feature2 branch. Just
like a regular rebase, an interactive rebase may involve merging so you will be prompted
about which kind of merge to use.

The interactive rebase is controlled from the Rebase Interactive view.

28

This view lists all the commits that follow the selected commit on the branch. For each of the
commits you can now decide the action to perform. The following actions can be chosen:

• Pick
Keep the commit as it is. This is the default action.

• Skip
Remove the commit from the history.

• Edit
Make a pause before the commit so you can add additional changes to it.

• Squash
Combine the commit with its predecessor. Also allow the commit message to be
edited.

• Fixup
Combine the commit with its predecessor, and use the predecessor's commit message.

• Reword
Make a pause before the commit so you can edit its commit message.

When you have set the action for the commits you have defined the steps that will take place
when you start the interactive rebase. If you want you can reorder the commits using the Up
and Down buttons.

For example, assume we want to keep the "Yet another fix" commit but give it a better com-
mit message, and that we want to skip the "Cosmetic change" commit. Then we can set the
following actions for the commits:

Press the Start button to start the interactive rebase. All the steps in the view will be per-
formed in the specified order. The resulting history will look like this:

For more details about interactive rebase take a look a the EGit user guide.

29

http://wiki.eclipse.org/EGit/User_Guide#Interactive_Rebase

A word of warning: Avoid using interactive rebase on a branch that you have pushed to
a remote repository and are sharing with other team members. Rewriting the history for
a remote branch may cause serious problems for everybody that has pulled the branch
to their local repository.

In the above example we used interactive rebase to rewrite the history of a single branch. Of
course you can also select a commit on a different branch. In that case the interactive rebase
will start by checking out that branch and then allow you to set the actions for all commits
that are present on both the branches (after the common commit from where the two branches
originate).

Resolving Conflicts
Unfortunately not all merge and rebase operations are as simple as the scenarios we looked at
in Merge and Rebase. Whenever we perform a merge or rebase there is a chance that it leads
to one or many merge conflicts. This chapter is about how to resolve such conflicts.

Merge Conflicts
If merge conflicts occur you will be notified by the information dialog that pops up after the
merge or rebase operation has completed. Here is an example of what that dialog may look
like when a merge led to a conflict.

The view that is used for understanding and resolving the conflict is the Git Staging View. If
you open this view when the repository is in a conflict state, you will see the text ”Repository
state: Conflicts”. This tells you that the conflicts must be resolved before you can commit
your changes. The Commit buttons will not be enabled until the conflicts have been resolved.

30

The files that contain the conflicting changes are marked with a small red icon, not only in
this view but also in others such as the Project Explorer.

To resolve conflicts you use the Merge Tool command. Right-click on a file marked as con-
flicting and perform the context menu command Merge Tool.

Just like when merging or rebasing, a dialog will ask you what kind of merge tool to use.

In most cases it's recommended to use Closure merge since it leads to fewer merge sessions,
and more accurate descriptions of the conflicting changes. This helps you understand how to
best resolve the conflicts.
See the document Comparing and Merging Models for more information about the different
kinds of merges.

The Merge Tool command invokes the interactive merge editor of Model RealTime.

31

https://rtist.hcldoc.com/help/topic/com.ibm.xtools.rsarte.webdoc/pdf/Model%20RealTime%20CompareMerge.pdf

See Comparing and Merging Models for information about how to use this merge editor in or-
der to inspect and resolve the conflicts.

After the merge session has been completed, all modified files will by default be added to the
Git index automatically. If you don't like this behavior you can disable the preference Team -
RSx EGit Integration - Automatically add resources to index after resolving conflicts.

Note! For historic reasons the Model RealTime merge editor uses the term "commit" for com-
pleting a merge session. Hence, it has nothing to do with committing in Git. In particular, the
modified files will not be automatically committed to Git when the merge session is "commit-
ted".

The Merge Tool command can also be used to resolve conflicts in non-model files. If you in-
voke the command on such a file, different interactive merge tools are invoked based on what
kind of file it is.

From the command line you can invoke the merge tool using the command git mergetool
or git mergetool <file>. If you invoke the command without a file argument Git will
automatically invoke a merge driver for each file that is in conflict.

The same warning as for merge and rebase also applies to Git mergetool: Do not use Git
mergetool for model files if you do not have an integration with Model RealTime that
triggers Model RealTime as the mergetool driver for model files. This is likely to cause
model corruption. See the section Integrating Model RealTime with Command Line Git for
more information about how to integrate Model RealTime with Git command line merge.

Due to the complexity of creating a merge tool integration with good performance that sup-
ports closure merge, the currently recommended best practice is to use the Model RealTime
graphical user interface and the Git Staging View to resolve merge conflicts.

Rebase Conflicts
Since the Git rebase operation essentially is a sequence of merges, the handling of conflicts in
a rebase scenario is very similar to the merge scenario. The main difference is that after re-
solving conflicts found during a rebase you will need to continue the rebase instead of only
committing the merge result.

Let's use the Rebase command in the History view, to rebase a feature branch on the master
branch.

32

https://rtist.hcldoc.com/help/topic/com.ibm.xtools.rsarte.webdoc/pdf/Model%20RealTime%20CompareMerge.pdf

Instead of the simple results dialog we would get from a merge, we now get a more complex
Rebase Result dialog describing the rebase state.

Here it is recommended to choose ”Do nothing (return to the workbench)” and again use the
Git Staging View for performing the Merge Tool command. It is not recommended to directly
start the Merge Tool from this dialog (the default choice).

When you have resolved the conflict in the merge editor, and completed the merge session,
press the Continue button in the Git Staging View to continue.

33

Continue the process of resolving conflicts using the Git Staging view until you get a dialog
indicating that the rebase was successfully completed.

Working with Remote Repositories
One of the key ideas behind Git is that it is a distributed version control system. From a prac-
tical point of view the main implication is that you easily can work locally with your reposito-
ries and changes. Almost everything we have described in this document so far has been
based on having local repositories. However, in order to share your work with the rest of the
world and collaborate on joint efforts you need to extend the scope and also look at remote
repositories.
When you work with remote repositories Git supports a multitude of different workflows,
from a simple scheme suitable for a small team to complex schemes for large distributed
projects. You can find a good description of some possible alternatives in Distributed Git -
Distributed Workflows. In addition, when using Git in complex projects it is commonly com-
bined with supporting tools for managing the review of changes. A popular tool to manage re-
views for Git repositories is Gerrit (https://www.gerritcodereview.com/). It is possible to com-
bine Model RealTime with Gerrit, both using the default Gerrit web based interface and using
the review support in Mylyn (http://www.eclipse.org/mylyn/). There is also a dedicated
Eclipse plugin called EGerrit (https://www.eclipse.org/egerrit) that can be used.

In this section and in Collaborating within a Team using Remote Branches we will focus on
the simple scheme where you work directly with a remote Git repository, assuming that you
have both direct read and write access to the remote repository.

A more advanced scheme is covered in Working with Remote Repositories using Gerrit Re-
view Support where we focus on how to contribute your work to a shared repository managed
using Gerrit.

Remote Repositories
If you followed the Getting Started instructions in Accessing a Remote Git Repository you
most likely already have at least one remote repository configured. From the command line,
you can use the git remote -v command to get information about what remote reposito-
ries are configured for your current local repository.

In the Model RealTime GUI this information is most easily seen in the Git Repositories view.
To see what remote repositories are configured expand the ”Remotes” node in the outline.
This is what the Git Repositories view could look like if you have cloned a remote repository
to get started.

34

https://www.eclipse.org/egerrit
http://www.eclipse.org/mylyn/
https://www.gerritcodereview.com/
https://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows
https://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows

In the above image, we set up a remote connection called “origin” to a remote repository. The
image also shows the web addresses (URLs) for pushing and pulling the data to and from this
remote setup.

Remote Tracking Branches
To ensure that local and remote repositories are not too tightly coupled Git introduces a spe-
cial mechanism to locally keep track of the state of a remote repository. This is the concept of
remote tracking branches.

In our example above we have a remote repository called ”origin”. To track the state of this
remote repository we will in our local repository have one or more branches only intended for
this purpose. These branches can be seen in most of the relevant views in Model RealTime.
Let us first check the Git Repositories view. If you expand the ”Branches” node for your
repository you will see that there now is another set of branches, shown in the ”Remote Track-
ing” part of the outline.

In our simple example we only have one remote repository named ”origin” and we can see
that there is only one branch ”origin/master” that we track from this remote repository.

The remote tracking branches will be visible also in other views where branches are visible.
For example the remote tracking branches are also visible in the History view.

35

This is what the simplest possible example can look like. This is the history of a newly cre-
ated repository with one ”origin/master” remote tracking branch (and one local ”master”
branch).

Note that the remote tracking branches are read-only from a local point of view. They will
only be updated when you use various commands to synchronize the state of your local repos-
itory with the remote repository.

Update from Remote Repositories: Fetch
It is easy to update the local repository with changes done in the remote repository. The most
basic way of doing this is using the ”Fetch” command. In our simple example from the previ-
ous section the command git fetch origin would retrieve any changes done in the re-
mote repository called ”origin” and make them available in the remote tracking branch ”ori-
gin/master”.

In the EGit GUI the Fetch command is of course also available, for example if you select a re-
mote repository in the Git Repositories view.

Note that the Fetch command only changes the remote tracking branches of your local reposi-
tory. No local branches are updated.

Assume for example that someone has updated the remote repository we called ”origin” and
we do a Fetch command. The history before the Fetch:

36

History after Fetch:

As you can see our local branch ”master” is still on the same commit (that also is what we
have checked out, as seen by the ”HEAD” indication). However the ”origin/master” tracking
branch indicates that there indeed was a change in the ”origin” remote repository. There was
one commit done on the ”master” branch in this repository that we now also got locally in our
”origin/master” remote tracking branch.
In most cases we now want to merge this change into our own local ”master” branch. This can
be done exactly as for any other branch using the Merge command (see Merge). However, as
we will see in Upstream Configurations below, an easier way is to use the Pull command.

Upstream Configurations
To make it easier to incorporate changes from remote tracking branches to our local branches
(and vice versa) it is possible to define an upstream configuration for a local branch. If you
have used the Clone command to get a copy of a remote repository, this has already been
done for you.

To check and update the upstream configuration for a local branch we can use the command
Configure Branch from the Git Repositories view.

37

In this case we can see that the local ”master” branch is defined to have an upstream remote
tracking branch that is the ”master” branch on the ”origin” remote server. (You can ignore the
”refs/heads/” part of the name for now.)

The upstream configuration is what enables us to use two commands to update our local
repository from the remote and vice versa:

• The Pull command fetches the latest changes and automatically adds them to our local
branch. The "When pulling" drop down menu in the Git Branch Configuration dialog
allows you to configure how Pull should add the changes to our local branch. By de-
fault it will use Merge but you can also configure it to use Rebase.

• The Push command does the opposite. It takes our latest local changes, sends them to
the remote repository, commits them and fetches back the changes to the remote
tracking branch.

The two commands are described in the sections below.

Update from Remote Repositories: Pull
If you have an upstream configuration for a branch that identifies a remote tracking branch,
and thus also identifies a remote repository, you can use the Pull command instead of doing a
Fetch followed by a Merge. Pull will first do a Fetch from the remote repository to retrieve
the remote changes and then automatically merge the changes (either using Merge or Rebase).

Note that the Pull command is based on the branch that is currently checked out and will
change the files you currently have in the working tree similar to what the corresponding
merge would have done. Often it can therefore be good to do a Fetch before invoking the Pull,
just to be able to inspect what changes will be merged into your branch if you proceed with a
Pull.

You can invoke the Pull command for example from the Git Repositories view on any local
repository.

38

Use "Pull" to perform the Pull according to the upstream configuration for the branch, and use
"Pull..." if you want to perform the Pull using different settings.

Updating Remote Repositories with Local Changes using Push
To be able to push your local changes in a simple fashion to a remote repository, you need to
have both a remote tracking branch and an upstream configuration as discussed in the sections
Remote Tracking Branches and Upstream Configuration. There are other, more advanced
ways, to determine what and how to push, see for example The EGit Tutorial or the Git Refer-
ence for details. However, the most convenient mechanism is based on using remote tracking
branches and the upstream configuration to handle the mapping and that is what we'll use
now.

You can invoke the Push command from the command line using the command git push
origin master. Here ”origin” indicates the remote repository and ”master” is the branch to
push.

From Model RealTime you can do a Push from the Git Repositories view. Identify the branch
you want to push and use the "Push Branch" command in the context menu.

Collaborating within a Team using Remote Branches
So far in the remote repository discussion we have used the ”master” branch in all examples.
This is enough if there is only one team working on a project. All team members have write
access to the ”master” branch and they use this branch to share the progress of the work.
However, as soon as there is more than one team working on a project the Git remote branch
concept is the recommended way for the team members to share work. A remote branch is
simply any branch that is available on a remote server that all team members have access to.
By using one or more specific branches for the team's work they can use the remote server to
share progress while still not disturb the rest of the organization.

39

http://gitref.org/remotes/
http://gitref.org/remotes/
http://wiki.eclipse.org/EGit/User_Guide#Working_with_remote_Repositories

Creating a Remote Branch
From the command line a remote branch based on the current master branch can be created
using two Git commands:

• git checkout -b mybranch master to create the branch locally
• git push -u origin HEAD:mybranch to push the newly created branch to the

remote repository (”origin”), giving it the same name as the local branch. The ”-u”
flag makes Git configure a remote tracking branch and an upstream configuration au-
tomatically.

You can do the same thing from EGit. Create the branch as usual, for example using the ”Cre-
ate branch...” command from the Git Repositories view.

Make sure to mark the checkbox "Configure upstream for push and pull" if you plan to use
the Push and Pull commands. Then push the new branch to the remote repository.

Configuration of and Basic Operations for Remote Branches
Fortunately, working with a remote team branch is from most points of view no different than
working with the master branch as we discussed in the section Working with Remote Reposi-
tories. You can configure the remote tracking branch and the upstream configuration the same
way, except of course specifying the name of the team branch instead of ”master” in the rele-
vant configuration dialogs.

When the configuration is done you can then use the Fetch, Pull and Push commands to up-
date your local repository from the common repository and vice versa.

Working with Remote Repositories using Gerrit Review
Support
In the sections Working with Remote Repositories and Configuration of and Basic Operations
for Remote Team Branches we looked at a simple scheme where everybody can both read and
write from a common repository without constraints. This works well for a small organization
with a limited number of teams working on a reasonably small common project. However,
when the number of teams grows and the complexity of the application increases, it's useful to

40

have some constraints on the process of pushing contents to the master branch in the common
repository. For example, you may want to enforce code reviews before changes are delivered.

Git supports many different workflows to suit different teams and organizations. See for ex-
ample Distributed Git - Distributed Workflows to learn more about some typical workflows.
In many workflows there is often one main common repository that represents the official
version of the application source code. Then there is a scheme put in place with a "guardian"
that controls who can push changes to this common repository and how they can do so.

One common scheme that we will look at in this section is to use Gerrit as the guardian
(https://www.gerritcodereview.com/). The details of the process that guards the master branch
is configurable and is outside the scope of this document. Fortunately the overall workflow as
seen from our Model RealTime developer's point of view is similar for most scenarios.

Cloning and Initiating a Repository from Gerrit
When using Gerrit the common main repository is usually hosted on the Gerrit server. Getting
access to a repository from a Gerrit server is no different than from any other remote server.
So the process is the same as is described in Accessing a Remote Git Repository The only as-
pect to be aware of is that you often need to use the ssh protocol to access the Gerrit reposi-
tory. It is possible to change after cloning, but easiest to handle already from the beginning.

When you have cloned the repository you will need to tell Model RealTime that you want to
enable Gerrit specific commands for the repository and identify the remote that is to be used
for the Gerrit specific commands.

In some cases the Gerrit configuration will be set up automatically. You can check if it's al-
ready set-up by looking at the icon for the repository in the Git Repositories view. This is the

case if the icon shows a small green and red decorator:
In any case you can check and change the configuration using the Gerrit Configuration com-
mand that is available in the context menu of the Git Repositories view when a Remote is se-
lected.

The Gerrit configuration makes it possible both to set up the access method and remote ad-
dress of the Gerrit server as well as the review branch in the Gerrit repository to which you
will push review requests.

41

https://www.gerritcodereview.com/
https://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows

When the repository is enabled for Gerrit you will find some extra features, in particular the
”Push to Gerrit” and ”Fetch from Gerrit” context menu commands that are available for mod-
els in the Project explorer and repositories in the Git Repositories View.

Gerrit Basics
The purpose of Gerrit is to enable some form of review of commits, for example code re-
views. To accomplish this two key concepts are used:

• ”change ids”: A unique identifier that identifies a review request in Gerrit.
• ”for” branches: Branches in the Gerrit hosted repository that contains the commits to

be reviewed.
In Model RealTime you will see the change ids at the end of commit messages. The recom-
mended practice is to use a Git commit hook that automatically will add the change id when
you commit a change in Model RealTime. This can be downloaded from the Git repository
and we will assume that you use this hook. The result is that if you check your commits for
example in the History view, you will see lines starting with ”Change-Id:” followed by a long
identifier added to all your commit messages.

The ”for” branches will show up when you push changes to Gerrit. In Updating the Remote
Repository with Your Local Changes using Push we used an upstream configuration to iden-
tify a remote tracking branch and used this to identify the branch on the remote server we
wanted to push our changes to. We also used the same configuration for both fetch and push.
When using Gerrit this is no longer the case. We still use a remote tracking branch for fetch-
ing changes, but when pushing we instead push to a special ”for” branch on the Gerrit server.
The idea is that someone using Gerrit will review our changes (and potentially do other
checks, like building and running tests) and if all is fine deliver the change we proposed. The
change will then automatically be merged to the ”real” branch and we can retrieve the new
version using a fetch. We will take a close look at the push and review support later in this
chapter.

42

Basic Operations when using a Gerrit Based Repository
A Gerrit server is really no different than any other remote Git server. This means that the
commands you will perform for understanding version history, investigating commits, com-
mitting local changes etc are all the same. The only difference is the ”change ids” that will ap-
pear in commit messages.

Also, fetching changes from remote repositories and working with a team on shared remote
branches follows the same principles. The exception being of course the review process that
will change the way you push your changes. But actually, depending on how your Gerrit
server is configured, you can perhaps also continue to push as described previously in this
document, not starting a review process with Gerrit. This depends on the policy used by your
organization to handle contributions to the common main repository maintained by the Gerrit
server.

Push for Review
When you want to push a commit you have created for review using Gerrit, you will as men-
tioned before push to a special branch identified by a ”for” prefix. In most cases the branch
identification will look something like ”refs/for/mybranch” instead of the usual ”refs/head/
mybranch” that we have seen before.

If doing this from command line you would use a command similar to the following:

git push HEAD:refs/for/mybranch

This particular command assumes that:
• ”mybranch” is the name of the branch you want to push to, and
• you have the corresponding local branch checked out so HEAD identifies the commit

you want to push.

If using the Model RealTime user interface you will have a ”Push to Gerrit...” command
available for repositories in the Git Repositories view. Also in this case you will need to have
the local branch checked out so HEAD identifies the commit that you want to push for review.

This will pop a dialog where you can specify the push details.

43

It is worth noting that the ”Gerrit Branch” field supports name completion. If you press Con-
trol-Space in this field you can choose between the currently available branches.

After pressing the Finish button your commit becomes available on the Gerrit server for re-
view.

Perform a Review using Mylyn
Mylyn (http://www.eclipse.org/mylyn/) is a task and application lifecycle management frame-
work for Eclipse. From an Model RealTime point of view Mylyn has one very important fea-
ture: It enables reviewing Gerrit changes directly from within Model RealTime. Having to use
the Gerrit web interface for comparing model files is not very convenient since you then have
to look at the textual format for the model files. With Mylyn you can use the Model RealTime
Compare editor for looking at the changes.

Mylyn contains many additional features and you can find a good description of both the re-
view support and other features in the Mylyn User Guide. In this section we will only look at
the basic steps you are likely to need when reviewing Gerrit change requests.

Installing and Configuring Mylyn
If Mylyn is not installed by default in your Eclipse you can download it from http://www.e-
clipse.org/mylyn/ and install it using Help - Install New Software in Model RealTime.

44

http://www.eclipse.org/mylyn/
http://www.eclipse.org/mylyn/
https://wiki.eclipse.org/Mylyn/User_Guide
http://www.eclipse.org/mylyn/

When installing it is recommended to install at least the following features:

• "Mylyn Task List"
• "Mylyn Task-Focused Interface"
• "Mylyn Reviews Connector: Gerrit"
• "Mylyn Reviews Connector: Gerrit Dashboard"

Before you can use Mylyn for review you also need to connect it to your Gerrit server. This
can be done from the ”Task List” view of Mylyn. A convenient way is to open the ”Planning”
perspective in Eclipse. This is also a useful perspective for reviewing changes as we will see
in the next section.

In the Task list you can use the ”Add Repository...” command to connect to Gerrit.

Choose the Gerrit connection if you have more than one Mylyn connection installed.

You need to specify the URL of your Gerrit server and your login credentials on the wizard
pages that follows.

45

It also makes sense to choose to add a query automatically when prompted.

Select an appropriate Query type to set the scope of what you want to see.

46

When done you will have a Task List view that is configured to show review requests from
your Gerrit server.

Reviewing a Change Request in Mylyn
When you want to review the changes assigned to you (or other changes), the first step is to
look at the ”Task List” view again. The changes that match the query you created will now be
visible in the query node in the list.

47

If you don't see what you expect, press ”F5” to refresh the list.

When double-clicking on one of the matches you will get the Mylyn view that contains all rel-
evant information about the review request.

From an Model RealTime point of view the most interesting possibility is that you can di-
rectly access the contents of the change set. If you click on the ”Compare with Base” button
you will get a structure compare view that shows all changed files.

Double-clicking one of the model files will show you the differences in the Model RealTime
compare editor.

48

You can now add comments to the review and take any action that is necessary and the infor-
mation will be pushed back to the Gerrit review server exactly as if you would have accessed
it from the web interface.

Using Amend Commit to Fix Review Comments
If you have pushed a commit for review to Gerrit, and the reviewer had comments that you
would like to fix, then the Git support for amending commits is very handy.

Amending a commit in Git essentially means to make edits to the changes that already have
been committed. So it gives you a possibility to re-do some changes.

This can be done using the Model RealTime user interface in the following way:
• Checkout the commit that you want to change
• Open the Git Staging view
• Click on the ”Amend Commit” button

49

You now have the freedom to make any modifications you like to fix the review comments.
When done, stage the changes as usual.

You can now push the commit to Gerrit again as described in Push for Review.
Remember that to make this work in a Gerrit context it is important that you do not change
the Change-Id line in the commit comments. You want to make sure that the Change-Id is left
as it was to ensure that your fixes will be added to the same review request in Git, instead of
creating a new review request.

Other Common Scenarios – Stashing, Resetting and Tag-
ging
In this section we'll go through a few more common actions you likely will need to know
about: Stashing, resetting and tagging

Stashing – Temporarily Saving Your Changes
The purpose of the Git stashing feature is to make it possible to save changes you've done in
your working tree but that you for some reason don't want to commit to the repository at this
time. The typical example is where you are half-way through a change and don't want to com-

50

mit it when you get some more urgent task you need to handle. Stashing enables you to store
them in a safe place and get them back later. Stashing can thus be seen as a quick alternative
to creating a temporary branch and commit the changes on that branch.

The mechanism has two parts:
• Save your changes: stash them
• Get your changes back: unstash them

For command line handling of stashes, and more information about stashing see for example
https://git-scm.com/book/en/v2/Git-Tools-Stashing-and-Cleaning. In this section we'll focus
on the Model RealTime user interface actions.

To stash your current changes you can use the “Stashes - Stash Changes” command that is
available in the context menu of a repository in the Git Repositories view. This saves both the
modified files in your working tree and the files you have added to the Git index.

If you want you can add a short description of your changes before storing them.

The stashed changes appear in the Git Repositories view. To get your changes back to the
working tree, right click on the "stash" and perform the "Apply Stashed Changes" command.

51

https://git-scm.com/book/en/v2/Git-Tools-Stashing-and-Cleaning

Note that applying stashed changes do not automatically delete the stash. Perform the com-
mand "Delete Stashed Commit" when you no longer need the stash.

Reset – Reverting Your Changes
Sometimes it's useful to discard all your current changes in the working tree and revert to the
last stable version of the history. Git provides the “Reset” command for doing this. You can
perform “Reset” for example from the context menu of a repository in the Git Repositories
view.

There are three different variants of Reset: Soft, Mixed and Hard. The first two variants, Soft
and Mixed, do not actually revert your working tree changes. See http://git-scm.com/docs/git-
reset for details when these variants can be useful. The Hard Reset is what you most often
want to use as it will revert all your current changes to the working tree.

52

http://git-scm.com/docs/git-reset
http://git-scm.com/docs/git-reset

Tagging – Marking Important Commits
A tag is a label you can put on a specific commit. It is typically used to mark important com-
mits, for example to represent a release or other external delivery.

You can create a tag for any commit in the History view using the ”Create Tag” command in
the context menu.

You will be prompted for the name of the tag, and can also write a brief description of what it
means.

53

Tags are shown in the History view as a label in front of the commit message. They are also
shown in the Tags folder in the Git Repositories view.

From there you can also easily create a new branch based on a tag.

Integration with Command Line Git
In this section we will look at what is necessary in order to make command line Git com-
mands that trigger a merge operation to work for Model RealTime models. Note that this is a
necessary precondition to safely work with Model RealTime models from the Git command
line. Without the merge integration described below, Git merge commands may trigger a de-
fault text based merge that easily can create corrupt models.

We will also cover some other aspects of integrating Model RealTime with a Git customiza-
tion using hooks.

Invocation from Command Line
The integration of Model RealTime into Git command line handling is primarily done using
the Model RealTime command line tool for compare/merge. This is implemented by a Java
application called cmcmdline.jar that is available in the Model RealTime installation. It’s

54

located in the plugin folder for the com.ibm.xtools.comparemerge.team plugin. For example
(the part in boldface depends on the installed version of Model RealTime):

<install-dir>\plugins\
com.ibm.xtools.comparemerge.team_7.60.100.v20180618_1038\utm

The details of this command line application is given in the chapter ”Command Line Tool for
Compare/Merge” in ”Comparing and Merging Models”. See also the reference guides for the
command line tools available from the Model RealTime Compare/Merge documentation page .
In this document we will only cover what is needed for Git integration.

Merge Integration
Git allows the definition of ”merge drivers” in order to make it possible to integrate tools that
use a special-purpose storage format (like Model RealTime does) with the Git commands. A
description on how this is done can be found in http://git-scm.com/docs/gitattributes. See in
particular the section ”Defining a custom merge driver”.

The following is needed:
– A definition of the merge drivers in the Git configuration (e.g. in .git/config in

your repository)
– A mapping of the Model RealTime file extensions to the defined drivers using Git at-

tributes (e.g. in the .git/info/attributes file in your repository)

Let's look at an example config definition defining merge for the three most common types of
files handled by Model RealTime (.emx, .emf and .tc). As you can see the only difference be-
tween the drivers is that the extension is passed to the command line tool using the ”-ext” ar-
gument for emx/efx files. This is shown in bold below. The installation specific path to cm-
cmdline.jar that you need to modify (see above) are shown in bold and underlined.

[merge "rtistemx"]
name = Model RealTime EMX merge driver
driver = java -cp / path-to-cmcmdline-tool /cmcmdline.jar com.ibm.xtool-

s.comparemerge.cmcmdline.CMTool merge -ext=emx -ancestor %O -left %A -right %B
-out %A
[merge "rtistefx"]

name = Model RealTime EFX merge driver
driver = java -cp / path-to-cmcmdline-tool /cmcmdline.jar com.ibm.xtool-

s.comparemerge.cmcmdline.CMTool merge -ext=efx -ancestor %O -left %A -right %B
-out %A
[merge "rtisttc"]

name = Model RealTime TC merge driver
driver = java -cp / path-to-cmcmdline-tool /cmcmdline.jar com.ibm.xtool-

s.comparemerge.cmcmdline.CMTool merge -ancestor %O -left %A -right %B -out %A

An example definition from a Git attributes file:

*.emx merge=rtistemx
*.efx merge=rtistefx
*.tc merge=rtisttc

When these (or similar) definitions are done, all command line Git commands that trigger a
merge Invocation will correctly handle Model RealTime model files. Note however that this

55

http://git-scm.com/docs/gitattributes
https://rtist.hcldoc.com/help/topic/com.ibm.xtools.rsarte.webdoc/Articles/Comparing%20and%20Merging/index.html
https://rtist.hcldoc.com/help/topic/com.ibm.xtools.rsarte.webdoc/pdf/Model%20RealTime%20CompareMerge.pdf

will only trigger a file-by-file merge. To invoke a logical model merge or a closure merge ei-
ther use the Model RealTime graphical user interface or call the command line application
cmcmdline.jar directly as is describe in section ”Command Line Tool for Compare/Merge”
in
 ”Comparing and Merging Models”.

Also note that this integration only handles ”merge”, not the conflict resolution that requires a
”merge tool” integration. Currently we recommend the usage of the graphical user interface
in Model RealTime to handle conflict resolution.

Git Hooks
Git allows various hooks to be associated with various actions. In general this works fine to-
gether with Model RealTime, but there is one exception: Scripts that require user interaction,
for example asking for confirmation of some action, will NOT work from the Model Real-
Time
user interface. From a users point of view it will appear as if the tool hangs when this hap-
pens. A typically example is a pre-commit hook that asks for user input. This will for example
be triggered when pressing the ”Commit” button in the Git Staging View and the tool will ap-
pear to hang.

56

https://rtist.hcldoc.com/help/topic/com.ibm.xtools.rsarte.webdoc/pdf/Model%20RealTime%20CompareMerge.pdf

	DevOps Model RealTime
	Git Integration
	Introduction
	EGit Brief Overview
	Getting Started
	Eclipse Projects and Git Repositories
	Accessing a Remote Git Repository
	Importing an Existing Repository
	Storing an Existing Project in Git

	Git Staging – Checking work done and committing the result
	Git Staging View
	Investigating Changes
	Committing Changes
	Amending Changes to Previous Commit

	Git History – Investigating Commits and Branches
	The History View
	Filtering the History View
	Searching the History View
	Comparing from History View – Git Tree Compare View
	Using the Git Repositories View to Investigate Branches

	Checking Out and Creating Branches
	Check Out a Branch
	Create a New Branch
	Using the Git Repositories View to Work with Branches

	Merge and Rebase
	Merge
	Rebase
	Rewrite History using Squash Merge
	Merging a Specific Commit using Cherry Pick
	Interactive Rebase – Advanced Rewriting of History

	Resolving Conflicts
	Merge Conflicts
	Rebase Conflicts

	Working with Remote Repositories
	Remote Repositories
	Remote Tracking Branches
	Update from Remote Repositories: Fetch
	Upstream Configurations
	Update from Remote Repositories: Pull
	Updating Remote Repositories with Local Changes using Push

	Collaborating within a Team using Remote Branches
	Creating a Remote Branch
	Configuration of and Basic Operations for Remote Branches

	Working with Remote Repositories using Gerrit Review Support
	Cloning and Initiating a Repository from Gerrit
	Gerrit Basics
	Basic Operations when using a Gerrit Based Repository
	Push for Review
	Perform a Review using Mylyn
	Installing and Configuring Mylyn
	Reviewing a Change Request in Mylyn

	Using Amend Commit to Fix Review Comments

	Other Common Scenarios – Stashing, Resetting and Tagging
	Stashing – Temporarily Saving Your Changes
	Reset – Reverting Your Changes
	Tagging – Marking Important Commits

	Integration with Command Line Git
	Invocation from Command Line
	Merge Integration
	Git Hooks

