l o [o= A=

Debugging
DevOps Model RealTime Models

Mattias Mohlin
Senior Software Architect
HCL

DEBUGGING MODEL REALTIME MODELS 1
INTRODUCTION 2
STARTING A MODEL DEBUG SESSION 2
DEBUG AS REALTIME APPLICATION.cciieiuteteeeeeeiutteeeeeeiisreeeeeeiiseeeeeesestsesseseessesesssensasssessessssesseesinssssssessessssssssssssnsnns 3
L3 AN TN O 1Y ol N 3 (0 i (0 R 3
ATTACH THE MODEL DEBUGGER TO A RUNNING APPLICATION.0iiiiiiiiieieeeeieieieeeeeeeeeieeeeeeeeieeeeessesaeeeeeesesssssssssnsssnnnnnnnns 4

L AUNCH CONFIGURATIONS.ccceitteieeieeessssssessseeeereeeeeteseseseeeesssesesesssssssssssssessssssessseeeesseeseesessssssssssssssssssssssssessssseseeeenes 5
CoMBINING MODEL-LEVEL AND CODE-LEVEL DEBUGGING.........coitiiiiieiitiiiittteieeeee et ee e e e e e e e e eeeeee e esasasaaaaeaereeeeeesannanes 8
DEBUG VIEW 9
APPLICATION STRUCTURE VISUALIZATION.ceiiuvreeeeeeerreeeeeeesseeeeeeeeitsseeeeeassssseseesessssssessesssssessessssssessssmssssseeeseeeeseesees 9
APPLICATION EXECUTION CONTROL.uvvviiieiiiitieeieeeeiitteeeeeeeeieeeeeeeestaseeeesesaaaseesseesseeesesessaseseeessetanesessesraseessaaeeaaenees 11
EVENT QUEUES. ... utiiittee ettt ettt ettt ettt e ettt e ettt e et e e eeataeeetaeeetbeeeeaseeeeataeeeasseseessseesasseeenssaeaasseeeaasseesnsssssaesaeaeeaans 13
INSTANCE DIAGRAMS 13
MARKING OF EXECUTED ELEMENTS.....uuttttiiiiiiiiiiiiiieieee ettt e e e e e e e e eeeeeeeeeeeeesesssssasssasaerereereseaeaeeeeeeas 15
BREAKPOINTS 16
VARIABLES VIEW 17
EVENTS VIEW 19
SPECIFY EVENT DIATA....viiiiiiiiiiie ettt e e ettt e e e e et e e e e e e ar e e e e e e eetaaeeeeeentareeeeeeeatreeeeeensreeeeeenn 22
TRACING 23
CREATE A TRACE. . .eiieiittteie oottt ee et e e ettt e e e eea et e e eeetaa e e e e eestateeeeeeeeataaeeeseetaaseeeeensareseeessstareeeeeeaeaeaaens 23
CONFIGURE WHAT TO TRACE......ceiiutteiieiiiiieeie e ettt e e et e e e e ettt e e e e s eaaae e e e s seaaeeeeesessaaeeeesessssaseeessansesssssssnnnnnnnnnnnnnnn 24
VIEW CAPTURED TRACE......cciiiteeieeiieeitieie e e eeeteee e e e eettee e e e e eeaee e e e e esaaaaeeeesseataseeessenasaseeesesnsaeeeeessassassesssaraneeeseeeeeeenees 26
Searching and Filtering @ THACE................cc.ccccceciiiiiiiiiiiiiiiiiieeeeeee ettt e 27
Navigating from THACE EVENLS.............ccocoueiiiiiiieie ettt ettt ettt et et steete e st e e neeenneee e 28

View Trace EVEnt DEtAils................cccc.oociueeiueeieiie et 29
MANAZING LAVZE THACES.ooceeeeieeie ettt ettt ettt et ettt et e it et e s aaeeateesebe e bt e sabeeeeeas 29

This document describes how to debug a UML-RT model created in DevOps Model Real-
Time.

The document was last updated for Model RealTime 11.3. All screen shots were captured on
the Windows platform.

Introduction

Debugging a model that has been transformed into a real-time application helps you to
» track down and fix run-time problems and logical errors in the application
* understand the run-time behavior of the application
» visualize the current state of the application
* test how the application handles unusual scenarios

Debugging a model in Model RealTime is similar to debugging a C++ program using CDT or
a command-line debugger such as gdb. In fact, you could accomplish all the above tasks by
only using a C++ debugger. However, that approach would have some drawbacks:
e itrequires you to map constructs in generated C++ code back to the model
* it requires debugging into the TargetRTS code, and a deep understanding of how it im-
plements the RT Services Library
* it may require writing special debug code to, for example, send events to a capsule in-
stance, or to capture events received at a port
* remote debugging of an application that is deployed on a target machine can be com-
plex (need to have access to e.g. gdbserver on the target machine)

The model debugger in Model RealTime is not a replacement for a C++ debugger, but should
rather be seen as a complement to it. It allows you to debug the application at model-level
rather than code-level. If you wish you can combine both model-level and code-level debug-
ging at the same time. This can be very powerful since it allows you to execute the application
primarily at model-level, but then use the C++ debugger to do more low-level tasks such as
inspecting the values of variables, step into external C++ code, look at current threads etc.

The model debugger works by starting a generated application in observability mode. The
application then opens a socket on a port which the Model RealTime IDE can connect to. Us-
ing this communication channel Model RealTime can query the application for run-time infor-
mation, such as the currently available capsule instances and their current states. It can also
send debug commands to the application, for example to suspend or resume its execution, add
or remove breakpoints, send events to ports etc. Hence the model debugger allows you both to
control the execution of the application, as well as to observe what happens when it executes.
The picture below illustrates how the model debugger in the Model RealTime IDE interacts
with the debugged application.

control —

«— observe

port

Starting a Model Debug Session

You can start a model debug session in three different ways:
* Automatically launch the application locally and immediately start to debug it

* Automatically launch the application locally, and at a later point in time start a debug
session by attaching to the running application

* Manually launch the application locally or remotely (e.g. when it has been deployed
on a target machine) and start a debug session by attaching to the running application

Let’s look at each of these alternatives in more detail below.

Debug As RealTime Application

To automatically launch the application on your local machine, and immediately start to de-
bug it, follow these steps:

1. Right-click on the transformation configuration (TC) which you used for building the
application. Perform the command Debug As — RealTime Application. Note that the
TC must be of type Executable.

2. This command will first build the TC (if necessary) and then launch the built applica-
tion on your local machine. The application will start in a suspended mode where it
waits for commands from the model debugger. When the application has been
launched, and the model debugger is successfully connected to it, you will be
prompted to switch to the Model Debug perspective.

& Confirm Perspective Switch *

.je] This kind of launch is configured to open the Model Debug perspective when it suspends.

This perspective is designed to support execution and debugging of UML models. It is
similar to the Debug perspective for C/C++ development.

Do you want to switch to this perspective now?

[] Remember my decision

| switeh | No

It’s recommended to use the Model Debug perspective while debugging the applica-
tion at model-level.

You are now ready to start debugging the application using the commands provided by the
Debug view.

Run As RealTime Application

Sometimes you may not want to debug the application from the beginning, but instead let it
run for a while and then at some later point in time start to debug it. The main reason would
be performance; an application runs somewhat slower when the model debugger is attached to
it. So if your application needs to run for a while before it enters a state in which you want to
debug it, then you may want to use this approach:
1. Right-click on the TC which you used for building the application and perform the
command Run As — RealTime Application. The TC must be of type Executable.
2. In the dialog that appears, mark the checkbox Allow the model debugger to attach to
the launched application.
Also change the port number, if necessary.

=

[“] Allow the model debugger to attach to the launched application

Port | 3650

| OK | Cancel

When you press OK the application will start to run in observability mode. This means that
you can then later attach the model debugger to the running application by following the steps

described in Attach the Model Debugger to a Running Application. The application will start
to run immediately, i.e. it will not wait for you to attach the model debugger right away.

Note that if you don’t mark the checkbox in the above dialog, the application will run in nor-
mal mode, without any possibility to attach the model debugger to it. This can be useful if you
just want to run the application and observe its behavior using other ways than the model de-
bugger, for example by looking at printed trace messages.

Attach the Model Debugger to a Running Application

The model debugger can attach to any application that runs in observability mode. Running
the application as descibed in Run As RealTime Application is one way to start the application
in observability mode. But you can also start the application in this mode manually from the
command-line, by using the command line option -obslisten=<port>, where <port> is a port
that is available on the machine. For example:

./executable -obslisten=12345

The application will start in a suspended mode and will wait for the model debugger to attach
to it on the specified port. Follow these steps to attach the model debugger:
1. Right-click on the TC which you used for building the application and perform the
command Debug As — Remote RealTime Application (Attach).
2. In the dialog that appears, specify the name or IP adress of the host machine where the
application runs, and the port that was given as argument to the obslisten option.

S

Host‘ localhost |

Port | 12345 |

| OK | Cancel

3. When the model debugger has successfully attached to the application, you will be
prompted to switch to the Model Debug perspective.

You are now ready to start debugging the application using the commands provided by the
Debug view.

Launch Configurations

The commands in the "Run As” and ”Debug As” context menus of a TC for starting a model
debug session work by creating a so called launch configuration which contains all settings
needed for launching the application, or to attach to an already running application. You can
look at these launch configurations by means of the commands Run — Run Configurations
or Debug — Debug Configurations respectively. The command that runs the generated appli-
cation on the local machine generates launch configurations of type ”C/C++ Application”,
with appropriate arguments specified in the Arguments tab. Which arguments that are used
depend on if you want the model debugger to be able to later attach to the launched applica-
tion or not. Here is what the launch configuration looks like when you launch the application
with a possibility to later attach the model debugger to it:

]

e

Create, manage, and run configurations

EoEX B3~ Name: | atgs (2)

type filter text E Main | = Arguments . M Environment| 3

v [e] C/C++ Application Program arguments:

‘ -URTS_DEBUG=continue -obslisten=3650

[atcjs (1)
[t a.tcjs (2)

If you instead choose to run the application without a possibility to debug it, the argument will
instead be -URTS_DEBUG=quit which effectively will disconnect the debugger from the applica-
tion.

The command that launches the application locally and immediately starts to debug it gener-
ates a launch configuration of type ”RealTime Application”.

=)
i
Create, manage, and run configurations

= R | Fl 3p = Mame: | app.tejs |

app- [Main™_0d= Arguments | [Environment| % Debugger| %~ Source| [[] Commeon
v %2 Real Time Application
f&d app.tcjs

TC File: | /PingPong/app.tcjs | Browse ...
Port Mumber: | 3650 Connect Delay (sec): | 2
) . Revert Apply
Filter matched 2 of 16 items

This type of launch configuration is actually very similar to the ”C/C++ Application” type.
The only difference is that it contains a specification of the TC that built the application, and
in general contains slightly fewer settings. Also, the port to use for communication between
the model debugger and the application is specified on the Main tab and will automatically be
translated to the argument -obslisten=<port>. The default port number is specified in the
workspace preferences at Run/Debug — RealTime Application. You can override the default
port number in a particular launch configuration, and this is for example necessary if you
want to have multiple active debug sessions at the same time (either in the same or separate
Model RealTime instances). In the same way you can override the default timeout (2 seconds)
which specifies the maximum amount of time that the model debugger will wait for the
launched application to start up. If your application starts slowly you may need to raise this
limit.

The command that attaches the model debugger to an already running application generates a
launch configuration of type "Remote RealTime Application”.

& Debug Configurations O X

Create, manage, and run configurations

=h —H,
BREX|B®- Name: | _TCcjs (1) |
type filter text B Main
4 0SGi Framework ~
‘24 Real Time Application
Z, Remote Java Application TCFile: | /Pi_original/_TCtcjs | Browse ...

~ % Remote Real Time Application
e _TCagjs (1)

&4 app.tgs (1) IP Address: Port Number: | 12345 Connect Delay (sec):

& app.tgjs (3)
< Report

Filter matched 26 of 26 items Revert Apply

In this case the application is not launched by Model RealTime which means this type of
launch configuration is much simpler than the others. All its settings are contained in the Main
tab only.

In most cases you don’t need to care about these generated launch configurations. They are
created automatically, if necessary, when you use the context menu commands described
above. However, as you can see, they contain some additional settings that you sometimes
may need to adjust. For example, as already mentioned the default timeout when attempting
to attach the model debugger to a running application is 2 seconds. If you have a slow connec-
tion to the target machine where the application runs, you may need to raise this limit.

Other situations when you need to make changes in the launch configurations include when
your application takes custom command-line arguments, when environment variables need to
be set for the launched process, when shared libraries are dynamically loaded from custom lo-
cations etc.

When you find a need to make changes in the generated launch configurations, you could
consider to instead create your own launch configurations. These can be run or debugged di-
rectly from the launch configuration dialog (by pressing the Run or Debug button respec-
tively). You can also use the toolbar buttons which are convenient if you want to re-launch a
previously created launch configuration.

'{}:vaﬂLv

Press the arrow near these buttons to get a list of recently launched Debug or Run launch con-
figurations. To repeat launching the most recently launched Debug or Run launch configura-
tion just press the respective button once.

The table below summarizes the different launch configurations that are used and which com-
mand-line arguments that are set when launching the application.

Command Launch Configuration Command-line arguments

Debug As — RealTime Appli- | RealTime Application -obslisten=<port>

cation

Debug As — Remote Real- Remote RealTime Applica- |N/A (the application is

Time Application (Attach) tion not launched by Model Re-
alTime)

Run As — RealTime Applica- |C/C++ Application -URTS_DEBUG=quit

tion

(not marking the checkbox ”Allow
the model debugger to attach to the
launched application”)

Run As — RealTime Applica- | C/C++ Application -URTS_DEBUG=continue,
tion -obslisten=<port>

(marking the checkbox ”Allow the
model debugger to attach to the
launched application™)

Combining Model-Level and Code-Level Debugging

In Launch Configurations we saw that debugging an application locally works by starting it
with a few special command-line arguments such as -obslisten and/or -URTS_DEBUG. It should
therefore come as no surprise that it’s very easy to combine C++ level debugging with debug-
ging at the model level. These are the steps needed:

1. Create a Debug launch configuration of type ”C/C++ Application” for the generated
C++ application.

2. Add the command-line argument -obslisten=<port> in the Arguments tab, where
<port> is a port that is available on your machine.

3. Press Debug to start debugging the C++ application. By default you will be prompted
to switch to the Debug perspective and the application will be suspended in the main
function. If you don’t want it to stop in the main function (for example because you
use the main function that is provided by the TargetRTS, and you don’t have a debug-
compiled version of the TargetRTS), then you should unmark the checkbox in the De-
bugger tab.

MName: ‘ executable EXE

E Main | = Arguments | B Environment | %% Debugger . !

Stop on startup at:

4. Make sure that the application is not suspended. If it stopped in the main function you
need to press the Resume button in the toolbar.

5. Now attach to the running application using the steps described in Attach the Model
Debugger to a Running Application. Switch to the Model Debug perspective, or stay

in the Debug perspective. These perspectives are rather similar and either of them can
be used in this scenario.

The Debug view now shows the application twice. It may look like this:

4% Debug 2 |5 Project Explorer

~ [c] executable.EXE [C/C++ Application]
i executable.EXE [8664]
i gdb (8.1)
~ D a.tgs (3)[Remote Real Time Application]
~ # [SUSPENDED] @ localhost:12345
Lz Top

The first node represents the application at C++ level, while the second node represents the
application at model level. Under the first node you will see information about threads, C++
call stacks and it integrates with the Variables view to let you inspect and/or edit variables
when the C++ debugger has suspended the application. Under the second node you will see
the structure of the real-time application at the model level of abstraction, and you can use it
as explained in Debug View.

Running a combined C++ debugger and model debugger session can be very powerful since it
allows you to execute the model primarily at model-level, but then use the C++ debugger to
do more low-level tasks such as inspecting the values of variables, step into external C++
code, look at current threads etc. Some users may find it more convenient to use a separate
Eclipse instance for the C++ debug session. The benefit with that approach is that you then
have two separate Debug views (one in each Eclipse instance) so there is less need for
scrolling up and down in this view to alternate between the C++ and model view of the de-
bugged application. If you prefer to debug with something else than Eclipse CDT, for exam-
ple Visual Studio, then you will always have a separate IDE instance for the C++ debug ses-
sion, and only have the model debug session in the Model RealTime IDE.

When you debug the application using a C++ debugger you may want to step into TargetRTS
code. To make this possible you need to use a version of the TargetRTS that contains debug
symbols. Refer to the article in online help at Model RealTime User s Guide — Articles — Run-
ning and Debugging — Debugging the RT services library for details on how to build a debug
version of the TargetRTS.

Debug View

The Debug view is the primary view used when debugging a real-time application with the
model debugger. It allows you to control the execution of the application by commands such
as Suspend and Resume. It also shows the current structure of the application in terms of
which capsule instances that currently exist, which capsule parts they are located in, and
which port instances they have. Other debug-related views and editors typically interact with
the Debug view, either by looking at its currently selected node, or by supporting drag-and-
drop of items onto the nodes.

10

Application Structure Visualization

A debugged application is represented by a tree of nodes in the Debug view. The root node
represents the application as a whole. Its label shows which launch configuration that was
used for launching it (name and type). If the launch configuration was automatically gener-
ated by Model RealTime its name is the name of the TC that built the application (possibly
followed by a number to make the name unique).

Below the root node there are nodes representing the processes in the application (only one in
case the application is not distributed). The process node shows whether the application is
suspended, running or terminated. It also shows the name of the host machine where the
process runs, as well as the port it uses for communicating with the model debugger.

Below the process node there is a node that represents the instance of the top capsule, as spec-
ified in the TC.

If you expand further below the top capsule node you will see its capsule parts and below
them the capsule instances they currently contain. Under a capsule instance node you can also
see the ports of the capsule. If the port is replicated (i.e. has non-single multiplicity) all the
connected port instances are shown below the port node.

Below is a picture that summarizes the structure of the Debug view when debugging an appli-
cation with the model debugger:

4 Debug © I Project Explorer -— Launched application
« L app.tejs[Real Time Application]
- 0000000000
« % [RUNNING] @ localhost:3650 Debugged process
~ & FDSystem

v [dataAnalyzer TOp CapSU|e instance
~ [dataAnalyzer0 [DataAnalyzer : Oxf7e9d0]

S Port (replicated)
v Oosensor w————————————
& sensor(
@ sensorl g ——— POI”[instances
g sensor2

s log - Port (not replicated)

@ serverCommunication

v B sensors 4———————————————— CapSU|e part

s sensors: [Sensor ; Ox2ecffel]

0 sensors1 [Sensor: Oxi7ecl)) | Capsule instances
s sensors:2 [Sensor ; OxfTece] Contained in the part

For a capsule part the current number of capsule instances it contains are shown in square
brackets after the name. For example:

~ & iNNER [2 instances]
& iNNER:O [INNER : Ox2cd0190]
[iINNER:1 INNER : 0x150ee10]

An empty capsule part is marked with a red rectangle in its icon:

11

=) INMNER [0 instances]

Note that the Debug view supports multiple simultaneous debug sessions, which means the
Debug view can contain more than one root node. Most commands in the Debug view (and
also some commands in other debug-related views) are sensitive to which node that is se-
lected, so make sure the selection is correct before you perform a command. This is especially
important in case you debug multiple applications at the same time.

Application Execution Control

A debugged application can be in two states; Running or Suspended. When it is running you
can perform the command Suspend to suspend it, and when it is suspended you can perform
the command Resume to make it run again. The Suspend and Resume commands are avail-
able as buttons in the toolbar, and also as commands in the context menu of Debug view
nodes.

—_ [

> om g (000 W

Resume Suspend

The current state of the application is shown on the Process node in the Debug view:

15 Debug |5 Project Explorer

~ @ app.tgs[Real Time Application]
v| & [SUSPENDED]|@ localhost:3650
~ [%a FDSystem

Note that when a debug session starts the application is initially suspended at a point where
the top capsule is still not incarnated. However, the Debug view then already shows the top
capsule. This is done so you can prepare the debug session before the application starts to run.
For example, you can open the state instance diagram of the top capsule (see Instance Dia-
grams). The Debug view uses a special label for the top capsule node to show that it’s not yet
incarnated:

« D app.tcjs (2)[Remote RealTime Application]
v 5. [SUSPENDED] @ localhost:12345
|° <Top Capsule Not Incarnated >

When you resume the application the label will change to show the information about the in-
carnated top capsule instance (capsule name and address of the capsule instance):

~ @ app.cjs (6)[RealTime Application]
+ 2 [RUNNING] @ localhost;3650
[*a / [TLSystem : Ox754c70]
s Dieclipse-workspace\rtist_demo\TrafficLights

Another execution control command is Step Event.

12

& | = 2is

| Step Event (Alt+F10) |

It works by processing one event that is ready to be dispatched from the event queue of one of
the controllers in the application. If there is no event to dispatch this command does nothing.
For some kinds of applications this command allows you to single step through the applica-
tion by processing one event at a time. However, in most cases it is easier to put a breakpoint
at some interesting place in the application (see Breakpoints) and then resume the application
to let it run until the breakpoint is hit.

When you want to stop debugging the application you can perform the command Terminate.
Alternatively you can use Disconnect.

m P |8 &

Terminate Disconnect

The difference between these commands is that Terminate will kill the debugged application,
while Disconnect will just disconnect the debugger from it and let it continue to run. Discon-
nect is therefore mostly useful when you have attached the model debugger to an already run-
ning application that should continue to run after the debug session is finished.

In the context menu of Debug view nodes there are a few additional commands that some-
times are convenient:

* Terminate and Relaunch %
Terminates the application and then immediately relaunches it with the same settings
as used previously.

* Relaunch *
Launches the application once more. This command is useful when you previously
have terminated the application and then want to launch it again. However, it can also
be used without first terminating the application and in that case it will lead to two in-
stances of the application being debugged at the same time. This is normally not use-
ful, but if you want to do it remember to first edit the launch configuration so that each
debug session uses a unique port number.

* Remove All Terminated *
Removes all terminated debug sessions from the Debug view. Use this command to
clean up the Debug view before you start another debug session.

* Terminate and Remove *
Terminates the application and then removes it from the Debug view.

* Edit<TC> *
Opens a dialog that lets you edit the launch configuration that was used for launching
the debugged application. This can for example be convenient before you relaunch the
application if you want to use slightly different settings (for example different com-
mand-line arguments or a different debug port).

Many of these commands are also available in the Launch Configurations view:

13

O Launch Configurations

[v & RealTime Application
i _TCic)s
4 HelloWorld.tgys
Favorites

From this view you can see all your launch configurations and launch them by double-click.

Event Queues

The Debug view can also show the event queues of a capsule instance, i.e. the events that
have been sent to the capsule instance but that are not yet dispatched to it. Such an ’incom-
ing” event is shown below the port instance node to which it was sent. Here is an example:

v %5 a:0 [A: Ox2cbffd0]
v I Ports
v O ctrl
v @ ctrl:0
* eventl [prio: General, data: MyClass{a 3}]

Here we can see that the event “event]” has been sent to the capsule instance a:0” on its
“ctrl:0” port, and has not yet been handled. We can also see the priority and data (if any) of
the event.

Contrary to other nodes in the Debug view, event nodes are only shown when the application
is suspended. They will also appear immediately after you have manually injected an event
using the Events view. However, when the application is running such an event is usually pro-
cessed so quickly so you will not have time to see it unless the application is suspended when
the event is sent.

Instance Diagrams

At run-time each instance of a capsule has its own state machine. While debugging it’s there-

fore necessary to use so called instance diagrams for inspecting a particular capsule instance.
The current state (or current state configuration in case of a hierarchical state machine) can be
seen in a state instance diagram. You can open it from the context menu of a capsule instance

shown in the Debug view. The command is called Open State Instance Diagram. Here is an
example of a state instance diagram:

14

Siate Machine =9 Session: [_TC.tcjs] &= Active instance: [fadder(0]

request received " = Computing
&

ncrement computed

no ¥ yes, compute next increment

more increments?

At the top of the diagram there is information about the capsule instance to which the diagram
belongs. It also shows to which debug session it belongs, since it’s possible to have multiple
active debug sessions for the same application.

The active state is marked with a green flashing frame. In case of a hierarchical state machine,
each state in the active state configuration is marked like that. Double-click on composite
states in a state instance diagram to go into the state instance diagram that shows the nested
state machine. You can configure the color of the "active state frame” using the preference
Run/Debug — RealTime Application — Active element color. You have to restart the debug ses-
sion for this preference to take effect.

There is a similar command Open Structure Instance Diagram for opening the composite
structure diagram of a capsule instance. It shows which capsule parts that currently contain at
least one capsule instance. Here is an example:

{3 FDSystem ™ Session: [[SUSPENDED] @ localhost:3650@localhostapp.icjs] & Active instance: [/#5TRUCT#]

externalinterface frama
2 behavior

system-~ ag

od Co P %
dataAnalyzer : DataAnalyzer UM censors - Senser (010

serverCommunication S=0" dataAnalyzer~

CoOm=

o

-]
mOTTServer | MOQTTServer

15

Just like for state instance diagrams the context menu commands on a capsule part that open
other diagrams (Open State Machine Diagram and Open Composite Structure Diagram
respectively) will open the corresponding instance diagram. If the capsule part is optional or
has non-single multiplicity you will be prompted for which of the contained instances you
want to open the diagram. For example, when the “’sensors” capsule part in the above example
has been fully incarnated with 10 instances, the following dialog will appear if we try to open
a composite structure or state machine diagram from it:

=

The following ranges are supported: [0-9]

Select the part instance(s) to open the diagram for:

Cancel

You can open multiple instance diagrams at once if you specify a comma-separated list of in-
dices in this dialog (e.g. 0, 5, 14) or specify a range (e.g. 0-5).

The instance diagrams that you open during a debug session are remembered so that they can
be automatically opened the next time you launch a debug session for the same application.
You will be prompted when you start a model debug session if there are instance diagrams
that could be automatically restored.

% Restore Instance Diagrams for Model Debug Session X

'e Would you like to restore the persisted instance diagrams associated with this session?

[]Remember my decision

| Yes Mo

If you mark the checkbox your choice will be remembered the next time you start a model de-
bug session. You can get back the dialog later by setting the preference Run/Debug - RealTime
Application - Restore instance diagrams for model debug sessions to "Prompt".

Marking of Executed Elements

Sometimes it’s interesting to see which parts of the application that have executed so far.
Model RealTime can visualize this either by marking executed elements with a special icon or
a color. Use the preference Run/Debug — RealTime Application — Mark executed elements to
enable the tracking of executed elements and how they should be visualized.

Executed elements are shown in the instance diagrams. Here is an example of a state instance
diagram where we can see that only the initial transition has executed so far:

16

% State Machine ™ Session: [[SUSPENDED] & localt

= idle

| gethtatus

Visualizing executed elements can help to answer questions such as
» which parts of a state machine have executed at a certain point in time?
* how big is the coverage of an automatic test that has exercised the debugged applica-
tion?
* is there any “dead” code in a state machine (unreachable states for example)?

Executed elements are only shown in state instance diagrams, not in structure instance dia-
grams.

The visualization of executed elements is removed when you terminate the debug session. If
you want to remove it before that you can use the command Clear Execution History that is
available in the context menu of the Process node in the Debug view:
+ O app.tcjs[Real Time Application]
v ga [SUSPEMDIFDT @ lnealhnet IR50

v o3 Copy Stack Ctri+C
Find.. Ctrl+F

el Create Trace

W

» Clear Execution History

This command will clear all collected information about executed elements. It can for exam-
ple be useful if you want to visualize which parts of a state machine that were executed when
sending a particular event to a port.

Breakpoints

You can set breakpoints on elements in your model. The application will become suspended
when a breakpoint is hit, i.e. when the execution reaches an element with a breakpoint. The
following types of model elements can have breakpoints:
e State
The breakpoint is hit when the state becomes active (just after its entry code has run)
* Transition
The breakpoint is hit when the transition is about to be triggered (just before its effect
code runs)
* Port
The breakpoint is hit when an event is received on the port, before it triggers a transi-
tion

There are two kinds of breakpoints: type-wide breakpoints and instance breakpoints.

17

A type-wide breakpoint applies for all instances of the capsule that owns the element it is set
for. You can set a type-wide breakpoint either in the Project Explorer or in an instance or a
regular diagram that shows the element. Instance breakpoints apply for a particular capsule in-
stance only. Therefore you have to set an instance breakpoint from the context of an instance
diagram when the debug session has already been started.

To set a breakpoint for an element right-click on the element and perform the command Tog-
gle Breakpoint (or Toggle Instance Breakpoint) in its context menu. The breakpoint is
shown in the diagram with a small blue ball, next to the element. For example:

4

&I Ready

@g Breakpoints 2 |(x)=\arables T Events E] Console

&9 CPPModel:Capsulel:Statel
&9 CPPModel:Capsulel:State2 @/

Breakpoints are also shown in the Breakpoints view. For each breakpoint the qualified name
of the corresponding element is shown, and for instance breakpoints the capsule instance is
appended after the @ sign.

From there you can navigate by double-click to the element on which the breakpoint is set.
For type-wide breakpoints the element will be selected in a regular diagram. For instance
breakpoints, the element will instead be selected in an instance diagram, if a debug session is
active. Otherwise it will be selected in a regular diagram.

In the Breakpoints view you can unmark the checkbox to disable a breakpoint. Disabling a
breakpoint has the same effect as removing it, but is more convenient in case you later want to
enable it again. Disabled breakpoints are shown in diagrams using a hollow blue ball.

& Ready

The Breakpoints view is provided by Eclipse and is used by all debuggers, including the C++
debugger. Refer to the Eclipse documentation for more information about the features pro-
vided by the Breakpoints view that are the same regardless of which debugger that is used.

Variables View

Runtime values for capsule attributes are shown in the Variables view when you select a cap-
sule instance in the Debug view.

An attribute value is encoded to text using the type descriptor encode function of the at-

tribute’s type. As an example, assume we have a capsule with an attribute ”a_inner” that is
typed by a class MyClass.

18

«Capsule» MyClass
°2 INNER =My

[Eg a_inner : MyClass

O p:Sigs

When the application is debugged, the Variables view shows the value of this attribute when
an instance of the INNER capsule is selected in the Debug view.

15 Debug 2 5 Project Explorer = O =Variables 22 % Breakpoi.. ¥ Events B Console = O
= o ® | |iv B & CIERGEC N

~ @ HelloWorld.tgjs (1)[RealTime Application] MName Value
~ % [RUNNING] @ localhost:3650)= a_inner Ib false}

~ %2 / [TOP: Ox11c01f4d460]
~ & inner [1 instance]
& inner:0 [INNER : 0x11c01f4d390]
& Ports
pa C\Usersy, \eclipse-workspace-cpp',

You can edit the attribute value by right-clicking on the line in the Variables view only when
the application is suspended, and choosing Change Value from the context menu. Alterna-
tively, you can directly edit the value in the ”Value” column. Note that the value also is shown
in the text area at the bottom of the Variables view. This text area is only for looking at at-
tribute values, and you should not edit the value there.

ebug 2 5 Project Explorer = Variables ' Breakpoints 7 Events onsole
Debug =2 Project Expl = 0 Variables 2 % Breakpoi it BcC I = 0
B %000 B M| 3 T | i+ = 8 BB o @: | 09 oF 8
~ @ HelloWorld.tcjs (1)[RealTime Application] Name Value
« % [SUSPENDED] @ localhost:3650 Fee e aoenoa
~ B / [TOP : Ox11c0174d460] Select All Slid
« & inner [1 instance] = Copy Variables Ctrl+C |
E5 inner:0 [INNER : 0x11c014d390] Visw Mctey
& Ports Find... Ctrl+F
9, Change Value... |
< >
{b false}

The new value you set for an attribute value is decoded using the type descriptor decode func-
tion of the attribute’s type. If decoding fails (for example because you entered a value of an
incorrect type) the attribute value is not changed.

The model debugger can show and edit the values of all attributes typed by a type that has a
type descriptor, regardless of the visibility of the attribute in the model. If you have attributes
typed by complex types, and you find that the default text encoding is hard to read and edit,
then it can be a good idea to write your own type descriptor functions (encode and decode) to

19

simplify viewing and editing the values of those attributes while debugging. Refer to the arti-
cle in online help at Model RealTime User s Guide — Articles — Modeling Realtime Applica-
tions — Writing a type descriptor for more details on this topic.

The Variables view shows current values of attributes each time the application gets sus-
pended or when another capsule instance is selected in the Debug view. You can also force a
refresh of the Variables view when the application is running by clicking the Refresh button
in the view tool bar. If you want to automatically refresh the view each time an attribute gets a
new value, you can click the Toggle Monitor Variables toggle button in the tool bar. This can
be useful in order to do a live monitoring of the value of an attribute, as the application is run-
ning. However, in this mode the application will run somewhat slower due to the frequent no-
tifications that have to be sent from the running application.

= Variables & % Breakpoints ¥ Events B E Ci T = 0

Events View

While you are debugging an application using the model debugger, it’s often useful to interact
with it by manually sending events to a capsule port.

* During a local debug session the manually sent event can emulate what would happen
if the application receives that event from an external component when it is deployed
in the target environment.

* You can trigger unusual error scenarios by manually sending events in order to debug
how the application behaves in those situations.

* You can send a series of events in order to cause a particular capsule instance to transi-
tion to an interesting state in its state machine, from where you want to debug its be-
havior.

* You can send the timeout event to a port typed by the Timing protocol to investigate
what will happen when the timer expires.

You can send events to any port that is visible in the Debug view, not only to the service ports
of a capsule. The only requirement is that the port is typed by a protocol that contains at least
one incoming event (or outgoing event in case the port is conjugated). This includes also ports
that are typed by protocols from the RT Services Library, for example the Timing protocol.

Events are sent from the Events view. Before you can send any events you must populate the
Events view with the events that you want to send. This can be done in a few different ways:

* You can use the command Populate Events View that is available in the context menu
of ports shown in the Debug view or the Project Explorer. It will add to the Events
view all events that can be sent to that particular port.

* You can drag an event from the Project Explorer and drop it in the Events view.

* You can use the Add Event command that is available in the Events view toolbar to
open a dialog that lets you search for the event to add to the Events view.

ol L -

20

* You can import events into the Events view which you previously have exported. Use
the commands Export events and Import events that are available in the view menu
of the Events view.

¥ = O B Console &
g1 Import events...
ey Export events...

To send an event you can simply drag it from the Events view and drop it onto a port node in
the Debug view. If the port is replicated (i.e. has non-single multiplicity) you can drop it on a
specific port instance node shown below the port node. If the application is suspended you
will see the sent event appear under the port node in the Debug view. For example:
v @ Ports
v @ lev2out
v O levZout:0
InEventINT [prio: General, data: int 12]

The event will then be dispatched when you resume the application or perform Step Event. If
the application was already running when you sent the event, it will immediately be dis-
patched.

An alternative way to send an event is to first select the receiver port node in the Debug view
and then do one of the following:
* Select the event to send in the Events view, and then perform the command Send
Event which is available both in the toolbar of the Events view and in the context
menu of the selected event.

B = O

* Right-click on the port node in the Debug view and perform the command Send
Event in its context menu. This command does not look at what is selected in the
Events view, but instead opens a dialog that lets you specify which event you want to
send to the port. You can also specify data for the event, and mark a checkbox if you
want to save the sent event in the Events view so you can send it again in the future.

21

Enter event name or pattern v

Matching items:

+ CPPModel:EXT:event_with_bool ~
&+ CPPModel:EXT:event_with_class

&+ CPPModel:EXT:event_with_float

& CPPModel:EXT:event_with_int

+ CPPModel::EXT:event_with_string

% CPPModel::EXT:first N

Data:

[]Save in Event View

& CPPModel:EXT:event_with_bool

It’s also possible to send an event by dragging it from the Events view and then dropping it on
a Debug View element that contains one or several ports (such as a capsule instance), or by
using the Send Event context menu command on such an element. In this case a dialog will
appear where you need to select the port to which you want to send the event.

= Select port where to send event O >

Enter port name or pattern (7= any character , *= any string)

e lightControl [12]

Port index (range starts with 0)

@ | OK | Cancel

If the port is replicated you can also specify a port index in this dialog (or leave it empty to
broadcast the event to all instances of the port). If you dropped an event the dialog will only
show the ports that can receive that event, which can help in case there are many ports to
choose from. If you instead used the Send Event command, another dialog will appear after
this one to let you select the event to send on the selected port.

When you send an event that is present in the Events view, the receiver of the event will be
stored in the ”Last Sent To” column. When this information has been set for an event you can

22

repeat sending the event to the same receiver by simply double-clicking on the event in the
Events view.

If you have many events in the Events view you can press the toolbar button Show only
events applicable for the selection. When this toggle button is pressed the Events view will
filter the event list to only show those events that can be sent to the port node that you have
selected in the Debug view.

FPRKB o0

l Show only events applicable for the selection |
I

Of course you can also manually filter the list of events by typing some text in the Filter box.
The usual wildcard characters (* and ?) can be used.

Specify Event Data

If the event has a data parameter, you must specify the data to send with the event. You should
specify the data as a text string on the format that the decode function for the data type ex-
pects. Below are some examples of event definitions where the data type uses the default de-
code function.

¥ Events &2 FPrRKw® =0
Filter
‘ = MyClass
Event Data Class Data Last Sent To Eea nt
! Egb : baol
[Pevent with_int int 5 exT:0
& event_with_bool bool true exXT:0
+ event_with_float float 314 exT:0
& event_with_class MyClass {a 8,b false} exXT:0

For an event with a class or string as data parameter the text in the Data column can be rather
long. In this case you can press the browse button in the Data column to open a dialog that
lets you edit big data texts more easily.

23

Event Data Class Data

4 getStatus & Data O X
< resumeSensor

% averageTemperatu

+ getData {a int

< suspendSensor b false,

msg "Hello World!"
]

0K Cancel

Hint! If you are unsure about which syntax the decode function for the event data type
expects, you can modify your application so that it sends the event with some sample data.
Then debug the application and create a trace which will capture the sent event in the trace
editor. There you can see how the event data was encoded. The same syntax should be used in
the Events view when you want to send that event interactively. See Tracing for more
information about how to trace events while debugging an application.

Tracing

The tracing functionality of Model RealTime allows you to capture traces of what happens in
an application during a model debug session. Tracing is a powerful feature that is useful in
many situations. Here are a few examples of usecases:
* You can visually inspect so that the application behaves as expected by looking for ex-
ample at what events that are sent on certain service ports.
* You can see the history of received events that caused a capsule to enter a particular
state.
* You can look at how much time is spent in different areas of the application by study-
ing the timestamps in the captured trace.
* You can use a captured trace as a means to run regression tests for an application. Cap-
tured traces are text files that a testing script can compare with a previously captured
trace.

Create a Trace

To create a new trace, use the context menu command Create Trace that is available on most
nodes in the Debug view.

24

%+ Debug 22 5 Project Explorer

~ @ atgs (1)[Real Time Application]
~ 5 [RUNNING] @ localhnet-2R50

~ [Top - Copy Stack Ctrl+C
&l cap Find... Ctrl+F
~ o Ports Drop To Frame

g frame B3 Create Trace

This command opens a trace editor that is used both for configuring what trace events to cap-
ture, as well as for showing the captured trace events. Before the trace editor opens you need
to specify the location of the trace file.

& Create Trace >

Name | |a_2[}18[}9[}3_[}91 121715000.trace

Location ‘ CAUsers\ MATTIA~1.MOH\AppData\Local\Temp', ‘ Browse...

[] Create all trace files in this location

| 0K | Cancel

By default trace files are saved in a temporary folder, if you decide to save them. This is be-
cause in most cases you will probably not be interested in saving your trace files for future
use. Mark the checkbox to avoid getting prompted by the dialog each time a new trace is cre-
ated. If you, during the trace session, realize that the captured trace is interesting enough to
save for the future, you can always use the command Save As in the File menu to save it any-
where you like.

In the Create Trace dialog you can also set a name for the trace (i.e. the name of the trace file).
The default name is constructed from the name of the TC and the current date and time.
Change it to something more meaningful if you plan to save the trace.

When you press OK an empty trace editor will appear. The next step is to configure it to cap-
ture the trace events you are interested in.

Configure What to Trace

Use the Capture tab in the trace editor to configure what trace events to include in the trace.
If you created the trace from the context menu of the Process node in the Debug view, then
the trace editor will initially be set-up to capture all trace events coming from the application.
This can work for smaller applications, or if you only plan to trace during a limited time of its
execution. However, for big applications, or trace sessions that span over a long time, it can
lead to a huge number of trace events being captured. This can impact negatively on the per-
formance of Model RealTime (although the tool has some mechanisms also for handling very
big traces).

25

If you instead created the trace from the context menu of a Debug view node that represents a
run-time element (capsule instance or port instance), then the trace editor will be initially set-
up to include only the trace events produced by that particular element. You can add addi-
tional elements to trace by either dragging them from the Debug view and dropping them into
the table, or by pressing the Add button and then browse to the element to trace. Note that
some elements, such as states, are not visible in the Debug view, so if you want to trace them
you have to add them using the latter approach.

When you add a capsule instance to the list, it's a shorthand for tracing all the ports and states
of that capsule instance, as well as the capsule instance itself and capsule instances it contains
in its parts, directly or indirectly. If this leads to too many trace events you can be more spe-
cific and for example only add some states or ports to the Capture tab.

Here is what the Capture tab may look like for a trace session where we want to trace only
some elements. This trace will capture all events that are either sent to or received on the port
“computer”. It will also capture when a certain state “WaitForIncrement” becomes active.

wh_TC_20230126_163639412265.trace X
Transformation Configuration: _TC.t
@ Capture from selected elements () Capture from all elements

Select the elements to capture trace events from.
Drag/drop elements from the Debug view or use the Add button.

Capture Element Path Add...
[~ & computer / [PiComputer : Ox187bf9165e0]/computer
[& WaitForincrement / [PiComputer : Ox187bf9165e0]/adder.0/Computing/WaitForincrement
Remove All
Send to App...

Suspend Capturing

& Stop Capturing

Capture Trace

Sub states are qualified with all container composite states, and capsule instances are qualified
with all container capsule instances. A slash (/) is used as separator in these state and instance
paths.

Note that you can change the configuration of what to trace at any time, also while the appli-
cation is running and trace events arrive to the trace editor. However, usually it’s best to only
change the trace configuration when the application is suspended.

You can temporarily suspend the capturing of trace events. Press the Suspend Capturing but-
ton to do this. When you later want to resume the trace session again, press Resume Captur-
ing. When you don’t want to capture any more trace events, press Stop Capturing. The trace
editor then enters a mode where it cannot capture any further trace events. The Capture tab
then becomes disabled, but you can still use the Trace tab for looking at the captured trace.

26

As can be seen in the picture above the Capture tab also contains a button called Send to App.
You can use it for sending an arbitrary command (in the form of a text string) to the debugged
application. You need to implement the handling of the command in a custom version of the
TargetRTS (in the function RTToolsetObserver::handleSendToApp). The default implementa-
tion handles a couple of built-in, internally used, commands (starting with the prefix “rt”). For
example, you can implement commands that perform certain application-specific tracing by
writing information to the console or a log file.

= 5end Message to Debugged App >

Send a custom text message to the debugged application.
Sent messages need to be handled in the TargetRTS function
RTToolsetObserver-handleSendToApp().

QK Cancel

View Captured Trace

The trace editor’s Trace tab shows all trace events that have been captured from the debugged
application. The trace events are shown in the order in which they arrived and are numbered
to make them easier to refer to. Here is an example of a trace that contains the most common
types of trace events:

B0 *3_20180831_141619134000.trace 2
BE 00 ® X Filter |
Trace Event Event Data Action Instance Time
1 & Capsule Incarnatio new Top() Top 179596 ms
2 @ State Activated <First> Top 179596 ms
3 & EventSent on Port first MyClass{a 4,b true} Out@eXT.0 Top 179606 ms
4 % EventSenton Port second Out@eXT:.0 Top 179606 ms
5 & Event Received on event_with_float float 3.140000104904 In@eXT.0 Top 205866 ms
6 & State Activated <First> Top 205866 ms
< >
Capture | Trace

The meaning of the different columns in the trace table is explained below:
* Trace Event
The kind of trace event. This describes what the application was doing at the point in
time when this trace event occurred. Depending on the type of trace event, different
information is shown in the other columns.

27

* Event
This is used for the trace events "Event Sent on Port” and ”Event Received on Port”. It
specifies which event that was sent or received on the port. It's also used for the "ini-
tialize" event that is sent to a newly incarnated capsule instance (which happens after
the "Capsule Incarnated" trace event).

* Data
This is also only used for trace events related to sending or receiving events on ports,
and the "initialize" event. It shows the data carried with the sent or received event. The
data is encoded to text using the type descriptor encode function of the data type. If the
text is too long to fit in the table cell, you can use the browse button that appears when
you click on it, to view the text in a dialog instead.

SensorDatafsensorld 4,temperature 21.1 [}[}[}[}m

* Action
Specifies more details about what happened in the application. The format of this text
depends on the kind of trace event. For "Capsule Incarnated" it shows the name of the
incarnated capsule. For "State Activated" it shows the name of the activated state. And
for trace events related to sending or receiving an event, it shows the port instance
where the event was sent or received.

* Instance
Specifies the capsule instance in the context of which the trace event occurred.

* Time
A timestamp indicating when the trace event was received. It shows the number of
milliseconds since the application was launched.

Buttons for suspending or resuming the trace session are available in the upper left corner in
the Trace tab. They work the same way as the corresponding buttons in the Capture tab. In ad-
dition there is a button for removing all captured trace events.

If you want to start looking at captured trace events while the application is still running, the
Scroll Lock button can be useful. Press it to avoid that the trace editor scrolls to the bottom
each time a new trace event arrives.

i 00 @ X |

ol ook |-

Searching and Filtering a Trace

Working with a captured trace usually involves lots of searching, to find particular interesting
trace events. The trace editor supports incremental search in a similar way as how it works in
for example the CDT editor. Press Ctrl+]J to start incremental search, and then type a few
characters. The first matching text in the trace will be highlighted as you type:

7 & Event Received on Port getSEis

Press Ctrl+]J again to go to the next matching text. Press Ctrl+Shift+J to go backwards and se-
lect the previously matching text.

28

You can also search in a trace using the regular Find command (Ctrl + F).

An alternative to searching can be to filter the list of events to only show those that match a

certain pattern. Type the pattern in the Filter box. It may contain the usual wildcard characters
(* or ?).

A very common filter is to only show trace events related to one particular capsule instance.
Applying this filter makes it easy to see what state a capsule instance was in when it sent or
received an event. Since this filter is so common there is a context menu command Show
Only This Instance for applying it. For example, assume we have the following selected
trace event showing that a "multiplier:0" instance sent an event on a port:

295 % EventSentonPort getincrement int 52 Out@mul:0 adder:0 27857 ms
296 « Event Received onP getincrement int 52 In@result:0 multiplier:0 27857 ms
? > Event Senton Port returnincrement dnuble 147402705724 Out@result:0 multiplier:0 27858 ms
298 @ State Activated Navigate > die> multiplier:0 27858 ms

299 . Event Received on P returnincrem Sho"‘f Only This Instance : f@muI:O adder:0 27859 ms

After filtering to only show the "multiplier:0" instance it becomes easy to see that it's active
state was "Idle" when this event was sent:

lc Bl.cpp le) RTOutSignal.inl Lel RTOutSignal.h L] TOP.cpp »d * TC_20210305_100607447000.trace 2

RE % 00 @ 3 Filter | multiplier:0

Trace Event Event Data Action Instance Time

291 % Event SentonPort returnincrement double -4.8215838321 Out@result:0 multiplier:0 27855 ms
292 & State Activated <|ldle> multiplier:0 27855 ms
296 4 Event Received on P getincrement int 52 In@result:0 multiplier:0 27857 ms
297 % Event SentonPort returnincrement double 1.47402705724 Out@result:0 multiplier:0 27858 ms
298 @ State Activated <|dle> multiplier:0 27858 ms

To see all trace events again just remove the text from the Filter box.

Navigating from Trace Events

You can navigate from a trace event to the corresponding model element that caused it. Right-
click on a row in the trace table and use the Navigate context menu. It has a sub menu item
for each possible element to which you can navigate from the trace event. Navigation is sup-
ported both to the definitions of the model elements (in the Project Explorer) and to run-time
instances (in the Debug view). The latter is of course only possible as long as the debug ses-
sion has not been terminated.

dataAvailable SensorData{sensorld 4.tei

da Navigate » Event e|
Port

dataAvailable Data Type el
Protocol

timeout Capsule Instance

29

View Trace Event Details

When you select a trace event in the Trace editor, details about the trace event are shown in
the Properties view. From there you can also navigate to model elements, such as the event or
its data type, by clicking on the hyperlinks.

[Properties 2
4+ Event Received on Port

Event: event with boo
Port: eXT Index: 0

Data: boo

Time:; 2,03,331 ms

Managing Large Traces

Traces can become very large, especially if you capture trace events from all elements and/or
let the trace session run for a long time. To manage large traces the trace editor splits captured
trace events into pages, with at most 1000 trace events per page. This avoids performance
problems in the trace editor that would arise if all trace events were shown at the same time.

Click the hyperlinks above the trace table to navigate between pages.

Page 192 of 195 First 190 191 193 194 Last

Trace Event
191001 4 Event Received on Port

30

	Debugging
	DevOps Model RealTime Models
	Introduction
	Starting a Model Debug Session
	Debug As RealTime Application
	Run As RealTime Application
	Attach the Model Debugger to a Running Application
	Launch Configurations
	Combining Model-Level and Code-Level Debugging

	Debug View
	Application Structure Visualization
	Application Execution Control
	Event Queues

	Instance Diagrams
	Marking of Executed Elements

	Breakpoints
	Variables View
	Events View
	Specify Event Data

	Tracing
	Create a Trace
	Configure What to Trace
	View Captured Trace
	Searching and Filtering a Trace
	Navigating from Trace Events
	View Trace Event Details
	Managing Large Traces

