
HCL DevOps Model RealTime

C++ RT Services Library
Version 1.14

1

Revision History

Date Version Description Author

2012 May 07 1.0 Initial Release Mattias Mohlin,
Senior Software
Architect

2014 May 14 1.1 Added definition of Run-to-Completion
semantics, chapter about intra and inter-
threaded communication, paragraph with
technical information about RTS library classes

Elena Volkova,
Software Engineer

2015 Jan 19 1.2 Updated for version 9.1.1 Mattias Mohlin

2015 May 14 1.3 Updated information about RTTimerId::isValid Elena Volkova

2016 Jun 09 1.4 Updated for version 10 2016.23
Added RTActor::rtgStateEntry

Mattias Mohlin

2018 Jun 20 1.5 Updated for version 10.2 2018.24 Mattias Mohlin

2018 Sep 25 1.6 Updated for version 10.3 2018.40 Mattias Mohlin

2018 Nov 27 1.7 Updated for version 10.3 2018.48 Mattias Mohlin

2019 Aug 30 1.8 Updated for version 10.3 2019.35 Mattias Mohlin

2020 Oct 14 1.9 Updated for version 10.3 2020.45 Mattias Mohlin

2021 Jun 04 1.10 Updated for version 11.1 2021.24
Type descriptors with template parameters

Mattias Mohlin

2021 Sep 20 1.11 Updated for version 11.1 2021.40
Added RTFrame::incarnateCustom and
RTActorFactory. Also added new chapter about
the new RTInjector service for dependency
injection.

Mattias Mohlin

2021 Nov 11 1.12 Updated for version 11.1 2021.46
Added chapter about how to avoid copying event
data, and updated chapter about type
descriptors to mention move functions.

Mattias Mohlin

2022 May 19 1.13 Updated for version 11.1 2022.21
Timer API now supports the std::chrono library

Mattias Mohlin

2023 January
23

1.14 Updated for version 11.2 2023.04
Clarified corrected behavior when sending an
event by move to a replicated port.
Documented new functions
RTActor::unhandledMessage() and
RTActor::messageReceivedBeforeInitialized()

Mattias Mohlin

2024
February 12

1.15 Updated for version 12.0.1
Documented new JSON Decoder
Documented new JSON Parser

Mattias Mohlin

2

3

Table of Contents
Introduction...5

Target Configurations...5

Services...7

Communication Service..7
Message Delivery..10
Message Representation...10
Avoiding to Copy Message Data...12
Deferring and Recalling Messages..13
Non-wired Ports...14

Logging Service..14
Timing Service..15
Frame Service...18

Working with Optional Capsule Parts..18
Working with Plugin Capsule Parts..20
Accessing Model Information at Run-Time..22

Exception Service...23
External Port Service..24
Dependency Injection Service..26

Structure of Generated C++ Code...29

Type Descriptors...29
Type Descriptor Hints..30
Templates..31

Threads...32
Logical threads and physical threads...33

Inside the C++ RT Services Library...36

Run-to-Completion Semantics..36
Intra-thread and Inter-thread Communication...36

Message queues...37
Message structure and freeList of messages..38
Intra-thread message sending...39
Inter-thread message sending...40
Message dispatch algorithm..41

Encoding and Decoding..42

C++ RT Services Library Class Reference...45

RTActor...45
RTActorClass..48
RTActorFactory...48
RTActorRef..49
RTActorId..49
RTController..50

4

RTExceptionSignal...51
RTFrame...52
RTInSignal..57
RTLog...58
RTMessage...59
RTObject_class...61
RTOutSignal..62
RTProtocol..66
RTSymmetricSignal..70
RTTimerId...70
RTTimespec..71
RTTiming...72
RTTypedValue...76

This document describes the C++ RT Services Library, which is the run-time library
used by real-time applications generated from DevOps Model RealTime.

Readers of this document are assumed to have read the document "Modeling Real-
Time Applications in Model RealTime" which covers many of the concepts which are
explained in more detail in this document.

All screen shots were captured on the Windows platform.

5

Introduction

The RT Services Library is a run-time framework used by the target code that is
generated from a UML real-time model. Model RealTime can transform the real-time
model to either C++ or C code, and hence there exists an implementation of the RT
Services Library for each of these target languages. The majority of the services that
are provided are the same regardless of implementation language. This document
describes these services by using the C++ version of the run-time library. Note that
the run-time library is often referred to as the “TargetRTS” (Target Run Time System).

The RT Services Library provides the run-time implementations of the UML real-time
concepts that are supported by Model RealTime. The implementation of some of
these services requires functionality provided by the target environment. By target
environment we mean the things that "surround" the real-time application, such as
the operating system and the target hardware on which the real-time application will
run.

The picture below shows the functional layering of a real-time application generated
by Model RealTime.

The RT Services Library isolates the application code from the target environment, so
that the same real-time application can be built for multiple target environments. In
addition to providing this platform independence, the RT Services Library also
provides certain services which the application can use at run-time. The following
categories of services are provided:

 Communication
 Timing
 Dynamic Structure
 Concurrency
 Message based processing

These services are described in the Services chapter.

Target Configurations
The RT Services Library should isolate the target code (at least the target code that
is generated from the UML model) from all sorts of target environment differences.

6

Since target environments exist in a large number of variations, there has to be also
a large number of versions of the RT Services Library. Each such version of the RT
Services Library is called a target configuration, and is configured to work with a
particular target environment. Here are some of the parameters that make up a target
configuration:

 The operating system (name and if needed also version)
 The operating system threading configuration (single or multi-threaded)
 The processor architecture
 The target compiler (name and version)

A specific target configuration of the RT Services Library provides a fixed value for
each of these parameters. These values can be put together to form a string which
uniquely identifies the target configuration in a compact way. Here is an example of
such a string:

 WinT.x64-VisualC++-17.0

The first part of the name is the target basename which identifies the operating
system name, version (if significant) and threading configuration. In the example
above the operating system name is Windows. The version is not specified which
means that the target configuration can work on more than one version of Windows.
The letter 'T' shows that the OS is multi-threaded (for single-threaded OS:es the letter
'S' is used instead).
The second part of the name, which follows after the dot, is the libset name which
identifies the processor architecture and the target compiler. In the example the
processor architecture is x64 (i.e the library is compiled for 64 bits) and the compiler
is Microsoft Visual C++ version 17.0.

Target configuration strings are used throughout the C++ implementation of the RT
Services Library. For example, you will see these strings if you look at the directories
in <InstallDir>/rsa_rt/C++/TargetRTS. You also see these strings in the
"TargetRTS configuration" drop down menu in the "Target Configuration" tab of the
Transformation Configuration Editor:

target
basename

libset name

7

The target configuration strings shown in this drop down menu are dynamically
extracted from the specified "Target services library" directory. Hence you can specify
any directory that contains target configurations of the RT Services Library. For
example, you can specify the C++/TargetRTS directory of the Model RealTime
installation to use one of the target configurations that are shipped with the Model
RealTime product. You can also specify a directory where you have created your own
custom version of the RT Services Library, adapted for a custom target configuration
that is not shipped as part of the Model RealTime installation. See the documentation
about the Target RTS wizard to learn how you can build your own custom version of
the RT Services Library using your platform and compiler of choice.

Services
In this chapter we will go through each of the run-time services which the RT
Services Library provides. These services can be used by the action code that you
include in your model, such as the code in the effect of a transition or the entry
behavior code of a state. You can also access these services from any hand-written
code that you include in your application.

Each run-time service has one or a few C++ header files which you must include
from the C++ source file where you need to use the service. You must also ensure
that the RT Services Library will be linked with when building the application. If the
source file is generated from the UML model, required #includes are usually added
automatically by the C++ code generator. However, if any #include is missing (either
from the RT Services Library or from some other library that your code needs to use)
you can simply select the context capsule and edit the "Header Preface" property
using the Code View or the Code Editor:

The header preface code snippet will be copied verbatim at the top of the header file
that is generated for the capsule. If you only need to use the included file in the
capsule implementation file, you can instead add the #include in the “Implementation
Preface” code snippet.

Communication Service
The communication service provides the means by which capsule instances can
communicate with each other using messages. Two kinds of communication are
supported:

 Asynchronous communication (send)

8

In this case the sender capsule instance is not blocked while the sent
message is in transit. As soon as it has sent the message to a port, it can
continue to execute. This type of communication is most commonly used since
it provides a high throughput of messages, with minimal dependencies
between sending and receiving capsules.

 Synchronous communication (invoke)
In this case the sender capsule instance is blocked until the sent message has
reached the receiver capsule instance, and that instance has replied on the
received message. Synchronous communication should only be used when
the sender is unable to continue its execution until a response for the sent
event has been received (typically because the receiver must compute some
data which the sender needs before it can proceed).
In some cases, the sender may not need any data from the receiver, but still
wants to suspend its execution until the receiver has processed the message.
For those cases there exists a possibility to perform an invoke where the reply
is implicitly made as soon as the message has been processed by the
receiver.

There are four important rules to remember when using synchronous
communication:

1. Unless the sender performs an invoke where the reply is implicitly
made, the receiver must call a reply() function to reply to the sender.
This has to be done while the receiver still is in the triggered transition
(more precisely, it must be done before the receiver enters a new
state). You can pass a return data with the reply message, which will be
made available to the sender.

2. It is the sender’s (i.e. caller’s) responsibility to allocate RTMessage
objects that can hold the reply data. The sender is also responsible for
deleting these objects when they are no longer needed. Use
RTMessage::isValid() to ensure that a reply object corresponds to a
valid reply made by the receiver.

3. It is not allowed to perform invokes across different threads. If you need
synchronous communication across threads you either have to
implement it by means of two asynchronous events (call/reply) and a
state where the sender can wait until the receiver replies, or use a more
low-level synchronization primitive such as a semaphore.

4. It is not allowed to perform invokes which lead to cycles. For example, if
capsule A invokes capsule B which in turn tries to invoke capsule A, the
invocation will fail with an error message at run-time.

Both synchronous and asynchronous communication is performed by calling
functions on the port through which the message shall be sent. The port is
transformed into a member variable in the C++ class that is generated from the
capsule. The type of the port variable is a subclass of RTProtocol. This subclass is
generated from the protocol that types the port, and contains one function for each
event defined in the protocol. The function returns an RTInSignal if the event is an in-
event, and an RTOutSignal if the event is an out-event. The send() and invoke()
functions (for asynchronous and synchronous communication respectively) are found

9

in the RTOutSignal class. If you want the receiver to make a reply for the invoke, you
should call the version of invoke() which takes a reply buffer argument. Otherwise
the reply will be implicitly made.

If the sender port is replicated (i.e. it has "many" multiplicity), the send() and
invoke() functions will broadcast the event to all port instances, creating one
message for each of them. In this case, if you instead want to send the event to a
specific port instance, there are the functions sendAt() and invokeAt() which take as
argument the index of the port instance to use. Indexing is 0-based.

The send functions have an optional parameter "priority" which specifies the priority
level at which the message shall be sent. The default value of this parameter is
"General" which is the standard priority that is appropriate for most messages. Note
that the invoke functions do not have a priority parameter since events in that case
are directly processed by the sender, without going through the event queue of the
receiver. Hence, synchronously sent events can be said to have higher priority than
any other event that is asynchronously sent.

Here are some examples of how to use the communication service for sending
events:

mul.getIncrement(12).send();

Sends the event "getIncrement" out through the "mul" port. The event has an integer
parameter and the sent message gets the value 12 for this parameter.

reqPort.abort().sendAt(2, High);

Sends the event "abort" out through the "reqPort" port. The event does not have any
parameters. The port is replicated, and the message for the event will be sent
through the port instance at index 2. The message is sent at priority level High.

RTMessage* replies = new RTMessage[aPort.size()];
aPort.ack().invoke(replies); // Hangs until all replies are available
for (int i = 0; i < aPort.size(); i++) {
 if (replies[i].isValid()) {
 // code to handle valid reply
 bool returnVal = (bool) replies[i].getData()
 }
 else {
 // code to handle invalid reply
 }
}
delete[] replies;

Synchronous sending of an event ”ack” to all port instances in the replicated port
"aPort" (broadcast). Note that each receiver has to reply on the received message
using code similar to

bPort.nack(false).reply();

10

Here the reply is made using the event "nack" which will be sent through the port
"bPort". The boolean value false is passed as return data which the sender can
access from the RTMessage object as shown above.

comPort.runTest().invoke();

Synchronous sending of an event ”runTest” through the port ”comPort”. The sender
will be blocked until the receiver has processed the event, which it will do
immediately, before processing other events in its event queue. The sender does not
require any response value from the sender, so the reply is implicitly made as soon
as the receiver has processed the event.

Message Delivery
The RT Services Library ensures that messages that are sent over the same
connection between a sender and a receiver are received in the same order as they
were sent. This is true even if the receiver capsule instance runs in a different thread
than the sender capsule instance. However, if the application is distributed so that the
sender and receiver runs in different processes, this guarantee may no longer hold.

There are situations when the RT Services Library fails to deliver a sent message to
the receiver. One such situation is when the message is sent to an unbound port
(either wired or non-wired). Another situation that may occur in distributed
applications is that there is a loss in the physical communication medium which
causes messages to not reach their receiver.
When the RT Services Library is able to detect the failure to deliver a message, a
run-time error will be issued. The functions for sending and invoking (and replying to)
events will in this case return 0, which your code can test on. For example:

if (!thePort.start().send())
 log.log("Failed to send 'start' event");

It is good practice to always test for these error return values, especially when
sending events through non-wired ports that are registered programmatically.

Another situation that may occur is that the message can reach the receiver, but
when it is time to dispatch the message to the receiver no transition is found that can
be triggered by the message. If this happens a virtual function unhandledMessage() is
called on the receiver capsule class. In almost all cases unhandled messages are
unexpected, and in those cases another virtual function unexpectedMessage() is
called. You can override this function to define what should happen in this case. The
default implementation of the function in RTActor (from which all generated capsule
classes inherit) is to print an error message to stderr.

Message Representation
The RT Services Library represents messages using objects of the RTMessage class.
This class contains

 The parameter data carried by the message. The data is untyped (void*) and
is accessed using the getData() function.

11

 The name of the event for the message, as defined in the protocol.
 The priority level at which the message was sent.

An RTMessage object is created by the RT Services Library and put in the message
queue when the message is sent to the receiver capsule instance. It stays in the
message queue until it becomes the first message in the queue, and then it will be
dispatched (i.e. delivered) to the receiver capsule instance. You should normally treat
the RTMessage object, and everything it contains, as read-only. This memory will be
deleted by the RT Services Library when all code that runs when the transition is
triggered is finished and control returns to the RT Services Library.

By default the RT Services Library passes all event parameter data by value in a
message, which means that the data will be copied when a message is sent. This
approach avoids problems with access of common data from different threads, but if
the data is big and/or sent a large number of times, it may be too costly to copy it.
See Avoiding to Copy Message Data for ways how you can avoid message data from
being copied.

For synchronous communication ("invoke") the event parameter data is not copied.
There is no need to do that since such communication may not take place across
different threads.

The RT Services Library makes use of type descriptors to know how to copy an
object of a user-defined type. If a type does not have a type descriptor, it cannot be
copied and hence cannot be sent by value with messages. See Type Descriptors for
more information about type descriptors.

When you develop your application, do not make the assumption that an RTMessage
object only will be copied exactly once by the RT Services Library when an event is
sent. There are situations when it will be copied multiple times. For example, when
using the model debugger the RT Services Library creates notifications which carry a
copy of the RTMessage object. It is therefore important that any data object that is sent
as an event parameter has a type descriptor where the copy function (e.g. a copy
constructor) is able to copy the data object multiple times. Note that copying of the
message object may happen even after it has been consumed by its receiver. The
receiver must therefore not change it in a way that will prevent it from later being
copied correctly.

The function that is generated for a transition provides direct access to the message
parameter data by means of an rtData parameter. This parameter is typed with a
pointer to the parameter data type, so it can be directly used without having to cast it.
Here is an example of a transition function where the trigger event has a double as
event parameter.

INLINE_METHODS void Adder_Actor::transition5_increment_computed(const
double * rtdata, INC_REQ::Base * rtport)
{
//{{{USR
double inc = *rtdata;

12

result += inc;
//}}}USR
}

If a transition can trigger on multiple events, with different types of event parameter
data, rtData will be an untyped pointer and you have to cast it to the expected type.

If you need to access the message parameter data outside of the transition function,
for example in a function generated from a capsule operation, you can use the
getMsg() function or the msg member variable of the capsule class (an instance of
RTActor) to access the RTMessage object for the currently processed message.

Avoiding to Copy Message Data
In many cases the data carried by a message will be small enough so that copying it
will not lead to any performance concerns. However, if a larger piece of data needs to
be sent it may be too costly to copy it. This is especially true if the data is not only
sent once, but several times.

One solution for avoiding that the RT Services Library copies the message data could
be to instead pass a pointer to the data as the event parameter. However, you then
need to ensure that the data (that now is shared between the sender and the
receiver) is sufficiently protected from simultaneous access from different threads (for
example using a semaphore or mutex). You must also ensure that this data is deleted
when it is no longer needed.

If the data is movable, a better solution can be to move the data instead of copying it.
To make the data movable its type descriptor must define a move function. If the data
type is a C++ class (compiled with a C++ 11 compiler) the usual way to make it
movable is to ensure it has a move constructor (either explicitly defined, or
automatically generated by the compiler). The type descriptor move function can then
simply invoke the move constructor. For example:

(void)new(target) MyClass(std::move(*source));

See Type Descriptors for more information about type descriptors.

You decide at the time an event is sent if its data should be copied or moved, based
on if an lvalue or rvalue reference to the data is used:

myPort.myEvent(data).send(); //Send by copy (lvalue ref to data)
myPort.myEvent(std::move(data)).send(); //Send by move (rvalue ref to data)

If you attempt to send the data by move, but it is not movable, the data will anyway
be copied. Also note that if you send an event on a replicated port (i.e. a port with
multiplicity > 1) the data can only be moved once. In this case the data will be moved
for the last port instance send, and copied for all the others.

If the capsule that receives an event needs to store its data for later use, it can also
avoid a data copy by moving the received data to for example a capsule attribute:

13

someAttr = std::move(*rtdata); // Avoid copying the message object

For rtData to be movable it must be declared as non-const. A property "Const rtdata
parameter" on the transition controls whether rtData should be declared as const or
not.

Note that there are more situations where message data gets copied, for example
when invoking an event (i.e. synchronous communication), or when providing
initialization data when incarnating a capsule into an optional capsule part. Currently
it's not possible to avoid copying message data in those situations.

Deferring and Recalling Messages
It is possible to defer the handling of a received message, in order to handle it at a
later point in time instead. To do so call the defer() function on the RTMessage object
for the received message.

Deferring a message puts it in a defer queue. This queue is manipulated by using the
functions provided by the RTInSignal class. For example, it has a function recall()
which can be used to recall a previously deferred message. When a message is
recalled it is moved from the defer queue back into the message queue, so that it can
later be dispatched to the receiver capsule instance again.

Note that a deferred message will stay in the defer queue until it is recalled. You must
ensure that you don't forget a message in the defer queue.

Here are some examples of deferring and recalling messages:

msg->defer();

Defers the current message (i.e. the message which was most recently dispatched to
the capsule instance).

thePort.theEvent().recall();

Recalls the first deferred message of the event "theEvent" on the port "thePort". It will
be moved to the back of the message queue.

thePort.theEvent().recallAll(1);

14

Recalls all deferred messages of the event "theEvent" on the port "thePort". The
recalled messages will be moved to the front of the message queue, which means
they will be the next messages that get dispatched to the capsule instance.

thePort.theEvent().purge();

Deletes all deferred message of the event "theEvent" on the port "thePort". If
"thePort" is replicated the function operates on all port instances.

If you need to defer a reply message for an invoked event, so that the reply can be
handled in a different transition, then you cannot use the defer() function since the
RTMessage object for the reply message usually is located in the same function where
invoke() is called. What you can do instead is to make a copy of the reply message
and send it to the same capsule instance again. Thereby you can defer the handling
of the reply message so that it does not have to occur immediately after the invoked
event has been processed by the receiver. For example:

RTMessage reply;
myport.myevent().invoke(&reply);
sendCopyToMe(&reply);

Of course, the sendCopyToMe() function can be used for any kind of event, and it's
useful whenever you cannot fully handle an event in a single transition.

Non-wired Ports
Ports that are defined as wired are automatically connected by the RT Services
Library when the containing capsule instance is initialized. The same is true for non-
wired ports which have the "Registration Kind" property set to "Automatic" or
"Automatic (Locked)". However, if this property is set to "Application" you have to
programmatically register such ports as either SPP or SAP ports. The RT Services
Library will establish the connections automatically when the ports have been
registered.

The functions to use for establishing the connections are found in the RTProtocol
class. Here is an example:

p1.registerSAP("aPort");

Registers the port "p1" as an SAP port under the name "aPort".

Logging Service
The RT Services Library provides a basic logging service by means of the Log
protocol. To use this service you have to add a port to the capsule from which you
want to print the log messages. The type of this port should be set to the Log
protocol.

Ports typed by the Log protocol will in C++ become member variables typed by the
Log::Base class. This class provides several functions for writing strings and other

15

data types to the stderr. Here are some examples:

log.log("Hello");

Prints the string "Hello" followed by a carriage return to the log.

log.show(x);

Prints the contents of the variable x to the log without a carriage return.

The Log::Base class provides several overloaded versions of log() and show() to
handle all the primitive C++ types. However, if you want to print an object of a user-
defined type, such as a UML class, you need to provide the type descriptor of this
user-defined type as a second argument. The encode function specified for the type
descriptor will be invoked in order to obtain a string encoding of the object which can
be printed. For example:

log.log(&myClass, &RTType_MyClass);

For more information about type descriptors see Type Descriptors.

Note that to flush the log you must call log.commit(). If you forget to flush the log you
may not see messages in the console until the underlying stream buffer is full.

Timing Service
The timing service is provided by means of a Timing protocol. A port that is typed by
this protocol acts as a timer which will send a timeout event either at a particular
point in time (absolute, or relative from now) or at periodic intervals.

The C++ class of the RT Services Library that implements the Timing protocol is
Timing::Base and it contains functions for setting the timer to timeout in various
ways, to cancel it etc. A timer that is set-up to timeout only once is called a one-shot
timer. It can be set to timeout either after a specified time duration (a relative time) or
at a specified point in time (an absolute time). A timer can also be set-up to timeout
repeatedly at periodic intervals, a so called periodic timer. Although it is possible to
implement such a timer by using a one-shot timer that is repeatedly reset, a periodic
timer is more accurate. This is because it always takes some time to process a
timeout and to reset the timer. Also, you have to take into account timer round-off
errors which may either reduce or add-to the drift in timing.

Time values are represented by the RTTimespec class. This class also has a static
function getclock() which populates an RTTimespec object according to the current
time value. You can compare different RTTimespec objects with the usual C++
comparison operators such as '<', '>=', '==' etc. You can also perform simple time
arithmetics using the '+' and '-' operators.

When setting timers, time values can also be specified using types from the
std::chrono library. Such values will then be automatically converted to RTTimespec

16

objects.

Here are some examples of using the timing service ("timer" is a port typed by the
Timing protocol):

timer.informIn(RTTimespec(5, 0));

Sets a one-shot timer to expire in 5 seconds from now (relative time).

timer.informIn(std::chrono::seconds(5));
// or shorter with C++ 14 and using namespace std::chrono_literals;
timer.informIn(5s);

Same as above but using the std::chrono library instead

RTTimespec now;
RTTimespec::getclock(now);
timer.informAt(now + RTTimespec(5, 0));

Sets a one-shot timer to expire in 5 seconds from now (absolute time).

std::chrono::system_clock::time_point t = std::chrono::system_clock::now()
+ std::chrono::seconds(5);
timer.informAt(t);

Same as above but using the std::chrono library instead

timer.informEvery(RTTimespec(5, 500000000));

Sets a periodic timer to expire every 5.5 seconds. The first timeout will occur in 5.5
seconds from now (relative time).

timer.informEvery(std::chrono::milliseconds(5500));
// or shorter with C++ 14 and using namespace std::chrono_literals;
timer.informEvery(5500ms);

Same as above but using the std::chrono library instead

Just like other events, the timeout event that is sent when a timer expires, can have
parameter data. It can also be sent with a non-default priority. Here are some
examples:

bool b = true;
timer.informIn(RTTimespec(5, 0), &b, &RTType_bool);

Sets a one-shot timer to expire in 5 seconds from now (relative time). The timeout
event will have a boolean parameter and the timeout message that is produced on
timeout will have the value true for this parameter. Note that the UML definition of
the timeout event does not have any parameter. It is only at the time of setting a
timer that we can specify whether it should have a parameter or not. If we want it to
have a parameter we therefore also have to specify the type of this parameter. This

17

is why we have to pass the type descriptor for the bool type as the last argument in
the call to informIn().

bool b = true;
timer.informIn(RTTimespec(5, 0), RTTypedValue(&b, &RTType_bool), High);

As above, but uses an RTTypedValue object to specify the parameter data and type.
The timeout event will be sent at the High priority level.

All functions that set a timer return an RTTimerNode object, from which you can
construct an RTTimerId object. You need to store the RTTimerId object if you want to
cancel the timer. Cancelling a timer ensures that it will not produce a timeout
message. This is true even if the timer already has expired at the time when it is
cancelled. In this case the timeout message exists in the message queue and is
waiting to be dispatched to the capsule instance from there. When the timer is
cancelled the timeout message is removed from the message queue. Here is an
example:

RTTimerId tid = timer.informIn(RTTimespec (10, 0));
if (!tid.isValid())

 log.log("error when setting a timer");
else

 timer.cancelTimer(tid);

Sets a one-shot timer to expire in 10 seconds from now. The timer is then
immediately cancelled using the obtained RTTimerId object. Note that you may
obtain a null value instead of an RTTimerNode object in case setting the timer fails,
and in this case the RTTimerId becomes invalid.

It is common that the timer is cancelled in another transition, typically because a
certain message arrived before the timer expired. In this case make sure that you
store the RTTimerId object in an attribute of the capsule, and not in a transition local
variable. Also note that an RTTimerId object only is valid until one of the following
happens

1. the timeout message for the timer is dispatched (does not apply for periodic
timers), or

2. the timer is cancelled

When in doubt you may use the isValid() function on an RTTimerId object to check
whether the timer id is valid or not.

Note that the RT Services Library maintains pointers to RTTimerId objects for timers
that have been set. This means you must ensure that the addresses of RTTimerId
objects do not change, as otherwise such pointers become invalid. For example, it is
not safe to store RTTimerId objects in containers which do not guarantee that
pointers to contained objects remain valid when adding or removing objects from the
container (an example of such an "unsafe" container is std::vector). If you need to
use such containers to keep track of multiple timers, you should only store pointers to
RTTimerId objects rather than the objects themselves.

18

When a capsule instance is destroyed all its active timers are automatically
cancelled.

Frame Service
The frame service is provided by means of a protocol Frame which can be used to
type ports in your model. The service allows you to work with capsule instances
dynamically in various ways, for example

 adding or removing capsule instances to/from optional and plugin capsule
parts

 accessing capsule instances from capsule parts
 obtaining information about the run-time representation of the UML model,

such as its structure and properties of certain run-time objects

The Frame protocol does not have any events, so all functionality is exposed in the
form of functions on the C++ class of the RT Services Library that implements the
Frame protocol. This class is Frame::Base.

Working with Optional Capsule Parts
The frame service allows you to incarnate new capsule instances into an optional
capsule part by calling an incarnate() function. The capsule part is identified by
means of an RTActorRef object. You obtain this object from the member variable that
corresponds to the capsule part.

By default the type of the capsule part is used to determine which capsule to
instantiate. However, you can also specify that another capsule should be
instantiated, as long as that capsule is compatible with the capsule that is the type of
the capsule part.

The call to incarnate() allows you to pass initialization data for the capsule instance.
Such data can be accessed by the incarnated capsule instance in its initial transition
by means of the parameter called rtdata. If the thread where incarnate() is called is
the same thread that will run the incarnated capsule instance, then the capsule's
initial transition will run synchronously (blocking the caller). In this case you can
modify the initialization data (provided you have unchecked the "Const rtdata
parameter" checkbox for the initial transition) if you need to pass some information
back to the caller. However, if the threads are different, the initial transition will run
asynchronously based on dispatching an initialization event, and in that case you
should not modify rtdata.

If you need to pass initialization data that is available already when the capsule
instance is created, you need to define a custom capsule constructor and then
instead use the incarnateCustom() function. This function allows you to provide the
code (in the form of a lambda expression) that will invoke the 'new' operator where
the initialization data can be passed to the constructor. For more information about
custom capsule constructors, see the article "Custom capsule constructors" in the
Model RealTime documentation.

19

By default the incarnated capsule instance starts to run in the same logical thread as
the caller. However, at the time of incarnation you can specify that the new capsule
instance shall run in another logical thread. You can refer to available logical threads
using the names specified in the Threads tab of the transformation configuration
editor.

If the capsule part is replicated (i.e. the upper bound of its multiplicity is greater than
1) you may also want to specify the index where to insert the created capsule
instance. Indexing starts at 0. If you specify -1 as index the RT Services Library will
insert the new capsule instance at the first slot that is available. This is the last slot
that was made available after a capsule instance in the capsule part was destroyed.
When all such slots have been filled up, the next available slot is the one that has the
lowest index number. For example, assume that you first incarnate a capsule into
indexes 0,1,2,3 in a replicated capsule part, and then destroy the capsule instances
in the same order (0,1,2,3). Then if you start to incarnate capsules using index -1 the
capsule instances will be inserted in the following index order: 3,2,1,0,4,5,6,...

The incarnate() (and incarnateCustom()) functions return an RTActorId object
which is a handle to the incarnated capsule instance. There are many things that may
go wrong when incarnating a capsule so you should always check the validity of this
handle by calling the isValid() function. Here are some examples of reasons why
an incarnation may fail and the RTActorId object to become invalid:

 You specified a bad index (for example an index that was higher than the
upper bound of the multiplicity of the capsule part).

 All indices of a replicated capsule part were already occupied by a capsule
instance, so there was no room for another one to be inserted.

 The incarnated capsule was not type compatible with the type of the capsule
part.

 The RTActorRef object that was used did not correspond to an optional
capsule part owned by the incarnating capsule.

 There was not enough memory available to allocate a new capsule instance.

If incarnation fails you can use the getError() function (defined in RTActor) to obtain
information about why it failed.

Let's look at an example of using the Frame service for incarnating a capsule.

The capsule "TopCap" has a capsule part "c1" with multiplicity 0..5 and typed by
another capsule "Cap". Here are some examples of code that "TopCap" may execute

20

to incarnate the "Cap" capsule into "c1":

RTActorId id = frame.incarnate(c1);
if (!id.isValid()) {
 RTController::Error error = getError();
 context()->perror(context()->strerror());
}

Incarnate "Cap" into "c1" at the first available index. If incarnation fails obtain the
error code and print the error message.

int data = 14;
RTActorId id = frame.incarnate(c1, EmptyActorClass, new_RTTypedValue(
data));

Incarnate "Cap" into "c1" at the first available index. An integer value (14) is passed
as initialization data which the "Cap" instance can obtain in its initial transition.

RTActorId id = frame.incarnateCustom(c1,
RTActorFactory([this](RTController * c, RTActorRef * a, int index) {

return new Cap_Actor(c, a, true); // User-defined constructor
})

);

Incarnate "Cap" into "c1" at the first available index. A boolean value (true) is passed
as initialization data in a call of a custom capsule constructor defined for "Cap".

RTActorId id = frame.incarnate(c1, EmptyActorClass, (const void*) 0,
 (const RTObject_class*) 0, MyThread, 3);

Incarnate "Cap" into "c1" at index 3. No initialization data is passed. The instantiated
capsule instance will run in the logical thread "MyThread".

The function to use for destroying a capsule instance is called destroy(). There
exists two overloads of this function, one that takes a capsule instance (i.e. an
RTActorId object) and one that takes a capsule part (i.e. an RTActorRef object). The
latter version of the function destroys all capsule instances that exist in the capsule
part.

Here is an example:

RTActorId id = frame.incarnationAt(c1, 3);
if (id.isValid()) {
 if (!frame.destroy(id)) {
 context()->perror(context()->strerror());
 }
}

Obtains the capsule instance at index 3 in the capsule part "c1". If such a capsule
instance exists and is valid, it will be destroyed.

21

Working with Plugin Capsule Parts
Optional capsule parts let you wait until run-time to decide what capsule instances
they should contain. However, once you have incarnated a capsule instance into an
optional capsule part, it will remain in that location for its entire lifetime. Sometimes
you may need the flexibility for a capsule instance to move between different capsule
parts, or even belong to more than one capsule part at the same time. This can be
accomplished by means of plugin capsule parts.

The frame service allows you to import an existing capsule instance into a plugin
capsule part by calling an import() function. The capsule part is identified by means
of an RTActorRef object. You obtain this object from the member variable that
corresponds to the capsule part.

There are some rules when importing a capsule instance into a plugin capsule part:
 The capsule instance must be valid. Use the isValid() function to check this.
 The capsule instance must be type compatible with the type of the capsule

part.
 The capsule instance must not have a port that is already bound.

Violations of these rules will cause the import() function to fail with an error code.
You can use the getError()function (defined in RTActor) to obtain information about
why it failed.

If the capsule part is replicated (i.e. the upper bound of it's multiplicity is greater than
1) you need to specify the index where to insert the imported capsule instance.
Indexing starts at 0.

To remove a capsule instance from a plugin capsule part call the deport() function.

Let's look at an example of using the Frame service for importing and deporting a
capsule instance to and from a plugin capsule part.

The capsule "TopCap" has an optional capsule part "c0" and two plugin capsule parts
"c1" and "c2". All capsule parts are typed by a capsule "Cap". The "TopCap" capsule
may contain the following code:

22

RTActorId id = frame.incarnate(c0);
if (!frame.import(id, c1)) {
 context()->perror("Failed to import into c1!");
}
if (!frame.deport(id, c1)) {
 context()->perror("Failed to deport from c1!");
}
if (!frame.import(id, c2)) {
 context()->perror("Failed to import into c2!");
}

Incarnate a "Cap" capsule instance into "c0", and then import it into "c1". After that
the port 'p' becomes bound to the port 'Pa'. The capsule instance can therefore not
immediately be imported also to "c2", but must first be deported from "c1".

Accessing Model Information at Run-Time
The UML model that describes your real-time application contains static design-time
information which sometimes is useful to access at run-time. For example, you may
want to access the name of a capsule to be able to write a generic logging function.
However, some parts of the UML model also has a run-time representation, which
contains dynamic information. For example, a capsule part has a run-time
representation by means of an RTActorRef object, and you may want to access
dynamic information such as its current replication factor (i.e. the number of capsule
instances currently stored in the capsule part).

The frame service provides several functions that let you access both static (design-
time) and dynamic (run-time) model information.

The function incarnationAt() lets you access a capsule instance from a capsule
part at a particular index. Just like incarnate() an RTActorId object is returned and
you should use its isValid() function to determine if there actually was a valid
capsule instance at the specified index. There is also a function incarnationsOf()
which returns all capsule instances that currently exist in a capsule part. This is
useful if you want to iterate over all capsule instances.

The function classOf() takes a capsule instance (RTActorId) and returns the type
descriptor for the capsule (RTActorClass). That is, this function obtains the dynamic
type of a capsule instance. This type is not necessarily the same as the static type of
the capsule part in which the capsule instance is located, but the dynamic type
should at least be compatible with the static type. The className() function returns
the capsule name from its type descriptor, and classIsKindOf() can be used to
check if a capsule is the same as or a subclass of another capsule. There are also
two useful functions me() and myClass() which return the capsule instance and
capsule which the running thread executes at the moment.

Here is an example of using some of these functions:

RTActorId id = frame.incarnationAt(c1, 3);
const RTActorClass& cls = frame.classOf(id);

23

log.log(frame.className(cls));
const RTActorClass& myCls = frame.myClass();
if (frame.classIsKindOf(myCls, cls))
 log.log("Compatible");
else
 log.log("Not compatible");
log.commit();

Get a capsule instance from capsule part "c1" at index 3 and obtain the type
descriptor for this capsule instance. Print the capsule name of this instance to the
log. Then obtain the type descriptor for the running capsule and check whether this
capsule is the same or a subclass of the capsule that is the type of the capsule
instance. Finally flush all printed log messages so they appear in the console.

Exception Service
The exception service is provided by means of a protocol Exception which can be
used to type ports in your model. The service allows you to send exception events to
these ports as a means to indicate that an exceptional situation has occurred.
Typically, this would be an error situation which the code that raises the exception
cannot handle itself. An exception message is handled by the RT Services Library
just like any other message, i.e. it will be placed in the message queue of the
receiving capsule instance. When the exception message gets dispatched a
transition may get triggered which can provide the actions that are necessary to
handle the exceptional situation.

The C++ class of the RT Services Library that implements the Exception protocol is
Exception::Base and it contains functions for raising a number of predefined
exceptions that are intended to cover common error situations. The functions return
an RTExceptionSignal object which provides a raise() function for sending the
exception event to the exception port.

Here is an example of code for raising an exception ("exPort" is a port typed by the
Exception protocol):

exPort.userError(RTString("An error occurred.")).raise();

Raise the exception "userError" on the port "exPort". The exception message will
have a string as parameter data.

Each exception is represented by a specific in-event in the Exception protocol. The
UML definitions of these in-events do not specify any event parameters, but you may
actually pass any data with these events using an RTTypedValue object. In the
example above we used this possibility to pass a string with the "userError" exception
event. Passing parameter data with an exception event is optional as shown in the
example below:

exPort.error().raise();

Raise the exception "error" on the port "exPort". The exception message does not
have any parameter data.

24

The following exceptions can be raised:
 arithmeticError
 error
 notFoundError
 notUnderstoodError
 serviceAccessError
 streamError
 subclassResponsibilityError
 timeSliceError
 userError

Note that the RT Services Library does not itself raise any exceptions. Your
application is hence responsible for raising the exceptions that needs to be handled.
This also means that there is no precise definition of when to use a particular kind of
exception. Your application has to define the conditions for when a certain exception
is raised. The general "error" exception can be used for errors that are not well
described by the names of the other kinds of exceptions.

If there is no transition available to be triggered by a dispatched exception message,
this is treated in the same way as for other messages (see Message Delivery).

Of course, the use of exceptions in an application is optional. You can always decide
to handle errors in a different way that does not involve usage of exceptions. For
example, you may define your own protocols for error handling, or you may handle
errors using some other mechanism. However, the use of C++ exceptions (throw /
catch) is often not appropriate, at least not for code that is invoked by the RT
Services Library, since it in general will not be possible to catch the exceptions that
are thrown. If you do use C++ exceptions make sure to catch them before control
returns to the RT Services Library.

External Port Service
The external port service is provided by means of a protocol External which can be
used to type ports in your model. The service allows you to send events to these
ports from threads that are external to the RT Services Library and the code that is
generated from the UML model. External ports is a useful mechanism for integrating
code generated by Model RealTime with external code that also is part of the real-
time application. For example, you may have one part of your application that is
responsible for reacting on external stimuli, for example bytes read from a socket or
data read from a sensor. Such code may run in an external thread, and interact with
the code generated from the UML model by means of external ports.

The C++ class of the RT Services Library that implements the External protocol is
External::Base and it contains functions that enable or disable the port to receive
these external events. These functions must be called from the thread on which the
capsule instance runs, i.e. an external event can only be sent to a capsule instance
when it is ready to receive such an event.

25

Here are examples of code which is run by the capsule instance to enable and
disable the reception of an event on an external port "extPort":

extPort.enable();

Enable reception of an event on the external port. This puts the port in a mode where
it is ready to receive exactly one external event.

extPort.disable();

Disable the reception of an event on the external port. This puts the port in a mode
where it cannot receive any external events.

When the external port receives an event, it automatically becomes disabled. It has
to be enabled again to be able to receive another event.

Here is an example of code which may only execute in the external thread, and
which will send an event to the external port "extPort":

if (extPort.raise() == 0){
 //fail
}
else {
 //pass
}

Sends an event to the external port. The raise() function returns zero if the event
failed to be sent. The typical reason for failing is that the external port is not currently
enabled to receive an external event.

Events sent to external ports can contain any data. Here is an example of sending a
string with the raised event:

char* str = "external data";
extPort.raise(&str, &RTType_RTpchar);

External data is received in the transition that is triggered by the event called event of
the External protocol. Here is an example of transition code that will receive the string
sent above:

RTpchar p = *((RTpchar*) rtdata);
printf("Received external data: %s", p);

Sometimes data may become available in the external thread at a higher pace than
what the capsule can (or want to) handle. In that case it’s not convenient to pass the
data to the capsule thread in the call of raise(). The external thread would have to
maintain a data structure for storing the received data until the capsule is ready to
receive it, and sending a complete data structure in the call of raise() would require

26

the definition of a custom type descriptor to avoid copying it.

The external port service provides an alternative mechanism for data transfer that is
more convenient in this situation. The external thread can just call an operation on
the external port to push an arbitrary data object onto the external port itself. Any
number of data objects can be pushed on the external port (i.e. it is not necessary
that the capsule handles them one by one). Here is an example of storing a pair
containing a string and an integer:

std::pair<std::string,int>* data = new std::pair<std::string,int>("external
data", 15);
extPort.dataPushBack(data);

When appropriate the external thread can notify the capsule that external data is
available by simply calling raise() without passing any arguments. If the call fails,
the external thread can choose to wait a little and try again, or simply ignore it and
not call raise() again until more external data becomes available. What to do
depends on how urgent it is that the capsule gets notified about the availability of
external data.

When the capsule is ready to handle the external data it can choose if it wants to
handle all received data, or just some of it. It can also choose if it wants to handle the
data in the same order as it arrived (FIFO) or to handle the most recently received
data first (LIFO). Which approach that is best is application specific. Here is an
example where it handles all received data from the above example in a FIFO
manner:

unsigned int remaining;
do {
 std::pair<std::string,int>* data;
 remaining = extPort.dataPopFront((void**) &data);
 if (data == 0)
 break;

 // Handle received external data here...

 delete data;
}
while (remaining > 0);

Note that the external thread allocates the memory for the external data, while the
capsule is responsible for deleting it once it has handled it.

Sometimes you may anyway choose to create a special data structure for external
data. For example, you may want to avoid sending duplicate data to the capsule, or
have other more specific requirements on the data structure. In that case the external
thread and the capsule thread has to take care to access the shared data in a thread-
safe manner. For example, you can protect it with a mutex. A mutex implementation
is available for the different targets at
<InstallDir>/rsa_rt/C++/TargetRTS/src/target/<target>/RTMutex.h.

27

Dependency Injection Service
The TargetRTS provides a simple dependency injection service by means of the
RTInjector class. You can use this service on its own, or together with a C++
dependency injection framework, to implement dependency injection in your real-time
application.

Note that "dependency" in this context refers to some form of run-time dependency,
not the UML dependency concept used for expressing compile-time dependencies
between elements. Examples of run-time dependencies include what capsule to use
when incarnating a capsule part, what configuration data to pass to its capsule
constructor, and which thread to run the incarnated capsule instance in.

The dependency injection service is strongly related to capsule factories (see
RTActorFactory). A capsule factory can delegate requests to create a capsule
instance to the dependency injection service. This makes it possible to centralize all
dependencies of capsules in an application to a central location (for example the top
capsule constructor).

To understand the value provided by the dependency injection service, let's first look
at an example where it is not used. Assume we have a LogSystem capsule which
internally uses a "logger" capsule part for implementing some logging functionality:

The application may have multiple implementations of logging functionality,
represented by different subcapsules inheriting from AbstractLogger. For example:

28

Now assume that you sometimes want to use one logging implementation, and
sometimes another. Perhaps you even want to switch dynamically from one
implementation to the other depending on some run-time condition.

Without dependency injection it would be necessary to write code that decides what
subcapsule of AbstractLogger to use when incarnating the "logger" capsule part. If
the capsule part would be declared as optional such code would be a call to
RTFrame::incarnate(), while if it's declared as fixed, you'll instead provide the code in
a capsule factory, for example as a "Create Function Body" code snippet on the
"logger" capsule part. The problem with both these approaches is that your
application will contain hard-coded "configuration" code that is spread out in different
places in the application. To change the application configuration to use different
logging implementations you will have to find all such configuration code and change
it.

With dependency injection it's possible to place such configuration code in a single
place, possibly outside the application logic itself. For example, you can write code in
the top capsule constructor which registers a create function to be used for
incarnating the "logger" capsule part:

RTInjector::getInstance().registerCreateFunction("/logger:0/logger",
[this](RTController * c, RTActorRef * a, int index) {

//return new SimpleLogger_Actor(c, a);
return new TimestampLogger_Actor(LoggerThread, a);

}
);

The capsule part is identified by means of its fully qualified run-time name (same as
is used by the model debugger). Note that dependency injection not only let's us
configure what capsule to create an instance of, but also what thread it should run in,
and any initialization data to pass to its capsule constructor.

Note that the RTInjector class provides a singleton object that can be used anywhere
from your application. You use this singleton both for registering create functions for
capsule parts (like in the example above) and for creating a capsule instance from a
capsule factory. For example, here is a simple capsule factory implementation that

29

delegates to the RTInjector singleton for creating capsule instances:

#include <RTInjector.h>

class CapsuleFactory : public RTActorFactoryInterface {
public:

RTActor* create(RTController *rts, RTActorRef *ref, int index) override {

return RTInjector::getInstance().create(rts, ref, index);
}

void destroy(RTActor* actor) override {
delete actor;

}

static CapsuleFactory factory;
};

If you need to change the configuration dynamically at run-time you can simply
register another create function for the same capsule part. It will then override the
previously registered create function.

Structure of Generated C++ Code
This chapter provides the information you need to know about the structure of the C+
+ code that is generated from an Model RealTime model. Generated C++ code
makes extensive use of classes provided by the RT Services Library.

Type Descriptors
A type descriptor is meta data that is generated for each user-defined type in the
model, such as a UML class. The RT Services Library uses information in a type
descriptor to know how to initialize, copy, destroy, encode and decode objects of the
corresponding type.

You can customize the generation of a type descriptor for a type by means of the
"Generate Descriptor" property. This property is available in the “C++ Target RTS” tab
in the Properties View.

30

If you set the property to "False" no type descriptor will be generated for the type.
This means that you for example cannot send an object of this type by value with an
event (since the RT Services Library does not know how it shall be copied). Another
thing that is lost is the ability to print an object of this type to the log using the Log
service (since the RT Services Library does not know how it shall be encoded).
You can set the property to "Manual" if you want to write a custom type descriptor for
the type. The file that contains your type descriptor must be linked with the
application or a link error will arise. For all details about the information that is stored
in a type descriptor (and which you have to provide if you write your own) see the
RTObject_class class.

If you set the property to "True" the model compiler will generate the type descriptor
using the Function Body code snippets that come below the "Generate Descriptor"
property. Note that it's mandatory to provide all function bodies except Move Function
Body, which you only need to implement if you want the type to be movable (see
Avoiding to Copy Message Data for an example when a movable type can be useful).

Note that in many cases the model compiler can generate a default type descriptor
implementation and if your needs are covered by that default implementation you
don't need to implement any of the Function Body code snippets.

Each type descriptor is instantiated exactly once in the generated application, and
are constants. Here is an example of a type descriptor constant that is generated for
a class "MyClass":

extern const RTObject_class RTType_MyClass;

Whenever you need to pass a type descriptor to a function in the RT Services Library
you shall use the address of the constant that is generated for the type descriptor.

The RT Services Library contains predefined type descriptors for all primitive types.
The convention is that for a type T the type descriptor is called RTType_T. For
example, the type descriptor RTType_double is the type descriptor for the double type.

Some functions in the RT Services Library take as arguments both a data value, and
the type of the data. The data value is then often expressed as an untyped pointer to
the data (void*) while the type of data is expressed using a type descriptor
(RTObject_class*). To be able to encapsule both the data value and the type
descriptor in a single object the RT Services Library provides a class RTTypedValue.

For capsules a special kind of type descriptor is generated using objects of the
RTActorClass class. This class for example stores the name of the capsule, a
reference to the type descriptor for its super capsule and information about the ports
of the capsule. This information is used by various functions in the RT Services
Library that let you access model information at run-time. See Accessing Model
Information at Run-Time.

31

Type Descriptor Hints
As mentioned above the model compiler can generate type descriptors automatically
for all types that are simple enough. This includes enumerations and classes with
attributes typed by other simple types. However, it cannot do it for more complex
types. One common case is that classes in the model are translated to typedefs or
type aliases of STL container types, such as lists, vectors or maps. Such types are
too complex for the model compiler to automatically generate a type descriptor for.
However, there is a preference RealTime Development – Build/Transformations – C+
+ – Generate type descriptors for complex types which can be set to let the model
compiler attempt to generate type descriptors also for such types. For this to work
you need to specify the “Type Descriptor Hint” property so the model compiler can
know something about the type. The following directives are recognized in this
property:

• @kind=vector|map|list|set

Kind of STL container
• @itemType=identifier|qualifiedIdentifier

Item type of STL container (for list/set/vector). If the type is a nested type, you
should use its fully qualified name, for example MyClass::MyNestedClass.

• @keyType=identifier|qualifiedIdentifier
@dataType=identifier|qualifiedIdentifier

Key/data types of STL container (for maps)

As an example, assume there is a typedef class with implementation type
std::map<A,B>, or a similar type alias. Then the “Type Descriptor Hint” property of
this typedef (or type alias) should contain the lines:
 @kind=map
 @keyType=A
 @dataType=B

Templates
Contrary to typedefs a C++ type alias may have template parameters. In that case
the generated type descriptor will also have the same template parameters. This
ensures that for each concrete instantiation of the type alias, a corresponding type
descriptor instance will also be available.

The type descriptor functions will then be generated as template functions which
makes it possible to implement them generically so they can work regardless of
actual template parameter being used. If necessary you can specialize some of
these template functions to use a special implementation for a certain set of actual
template parameters.

When implementing a generic type descriptor for a type alias with template
parameters it's often useful to be able to lookup the type descriptor of the actual type
template parameters being used. The TargetRTS provides a template function
RTObject_class::fromType<T>() for doing this. As an example assume we have
defined the following type alias:

template<typename T, unsigned int N > using StdArray = std::array<T, N>;

32

We can then implement the encode function for this type alias so it can encode all
kinds of arrays, regardless of the actual element type being used:

template<typename T, unsigned int N > inline int rtg_StdArray_encode(const
RTObject_class * type, const StdArray< T, N > * source, RTEncoding * coding)
{
//{{{USR
platform:/resource/type_descriptor_with_template_parameter/CPPModel.emx#_gcMGALo_E
eu4j48Uy6dLVQ|Target RTS|encodeFunctionBody
const RTObject_class *elementTypeDescriptor = RTObject_class::fromType<T>();
if (!elementTypeDescriptor)
 return 0; // Element type descriptor not available
int sum = 0;
bool first = true;
sum += coding->write_string(type->name());
sum += coding->write_string("{");
for (auto i = source->begin(); i != source->end(); i++) {
 if (!first)
 sum += coding->write_string(",");
 first = false;
 T element = *i;
 sum += elementTypeDescriptor->encode(&element, coding);
}
sum += coding->write_string("}");
return sum;
//}}}USR
}

The TargetRTS provides an implementation of the fromType<T>() template function
for each built-in C++ type. These template specializations are found in the file
RTObject_class.h. To make this function work also for other types, such as user-
defined types or types provided by the TargetRTS, you need to write a similar
specialization for them. For example:

template <> inline const RTObject_class* RTObject_class::fromType<StdString>() {
return &RTType_StdString; } // User-defined type: StdString
template <> inline const RTObject_class* RTObject_class::fromType<RTString>() {
return &RTType_RTString; } // Type provided by the TargetRTS: RTString

The generated code will define a name for the type descriptor which by default is
shared with all instantiations of the template. It's set to the name of the type alias. For
the above example:

template<typename T,unsigned int N> const char* RTName_StdArray<T,N>::name =
"StdArray";

You can specialize this variable definition to use a more specific name for the type
descriptor for each instantiation of the template that you use. For example:

template <> const char* RTName_StdArray<StdString, 4>::name = "StdArray<StdString,
4>";
template <> const char* RTName_StdArray<RTString, 2>::name = "StdArray<RTString,
2>";

33

If you don't do this, and the template is instantiated more than once, there will be
multiple type descriptors with the same name. This is allowed but a warning will be
printed at run-time. For example:

WARNING: A type "StdArray" was already installed

There is a function RTObject_class::lookup() which can return a type descriptor from
the name of the type it describes. This function will fail if there are multiple type
descriptors sharing the same name, so it's recommended to set a unique name for
each type descriptor.

Threads
One of the strengths of the RT Services Library is how easy it is to change the
threading configuration of a generated real-time application. This is mainly
accomplished by separating actual physical threads used from conceptual logical
threads.

Logical threads and physical threads
Each capsule instance has its own logical thread of control. This means that
conceptually it runs in its own thread, independently of other capsule instances.
However, the transformation configuration editor allows you to create multiple logical
threads (in the Threads tab) and each of them can run multiple capsule instances.

Logical threads are mapped to real physical threads in the Threads tab of the
transformation configuration editor. This mapping allows you to control the total
number of physical threads in the application, and how many capsule instances that
each physical thread is controlling.

In the generated code each logical thread is available as a variable typed by the
RTController class, and named according to what is specified in the Threads tab.
This variable is assigned to a corresponding physical thread in generated C++ code.
This means that when you refer to a logical thread in your application code, you
actually have access to the corresponding physical thread represented by an
RTController object.

The function that maps logical threads to physical threads is called
_rtg_mapLogicalThreads() and is generated into the Unit C++ file (by default called
UnitName.cpp). Next to this function you will also find the generated functions
_rtg_createThreads() and rtg_deleteThreads() which contain the code for
creating and deleting the physical threads that you have added in addition to the
default MainThread and TimerThread.

Here is an example of using the Threads tab in the transformation configuration
editor to add one additional physical thread "CustomThread" and a logical thread
"MyThread":

34

When you incarnate an optional capsule part you can specify that the new capsule
instance shall run in one of the logical threads you have specified in the Threads tab.
The top capsule instance always executes in the MainThread, and every capsule
instance contained in a fixed capsule part always executes in the same thread as the
owner capsule instance. See Working with Optional Capsule Parts for an example of
incarnating a capsule instance that is run by a custom logical thread.

The mapping you choose between logical threads and physical threads can have a
significant impact on the application performance. Capsule instances that may
perform long-running tasks are beneficial to run in separate physical threads,
because while a capsule instance performs a task, all the other logical threads that
are mapped to the same physical thread have to wait until the running capsule
instance returns control to the RT Services Library (see Run-to-Completion
Semantics). But at the same time there is a practical limit on how many physical
threads the target environment can support, and you must ensure that the application
stays within those limits.

Another input to your choice of how to map logical threads to physical threads is how
the capsule instances communicate data with each other. Capsule instances that run
in the same physical thread do not need to worry about thread synchronization of
data that is shared between them. However, if you use shared data between capsule
instances run by different physical threads you have to ensure that all access to such
data is done in a thread-safe manner. Read more about this in Intra-thread and Inter-
thread Communication.

Some target environments only support one thread. In this case the macro
USE_THREADS will be unset when compiling generated C++ code. This will remove all
code that deals with multiple threads, for example the functions
_rtg_createThreads() and rtg_deleteThreads().

35

To access the RTController object that represents the executing thread, you may call
the function context() that is available in the RTActor class. The RTController class
provides several useful functions, for example functions for accessing the most
recent error that has taken place in the thread. Here is an example that involves
usage of some of the RTController functions:

RTController* c = context();
if (c->getError() != RTController::ok) {
 c->perror("An error occurred on thread ");
 log.log(c->name());
 c->abort();
}

Check if there is a recent error in the context thread. If so it is printed, followed by the
name of the context physical thread (as specified in the Threads tab of the
transformation configuration editor). Finally, terminate the context thread (this will
destroy all capsule instances run by that thread).

36

Inside the C++ RT Services Library
This chapter describes some important things to know about how the RT Services
Library works. It also covers some optional utilities that your application can take
advantage of.

Run-to-Completion Semantics
The RT Services Library does not preempt capsule processing. The heart of the RT
Services Library are the controller objects (run by the physical threads) that are
responsible for dispatching messages to the capsule instances it manages. A
controller object has a message queue where it stores messages targeted at any of
the managed capsule instances. The basic mode of operation of a controller object is
to take the next message from its message queue and deliver it to the destination
capsule for processing. When it delivers the message, it invokes the destination
capsule's state machine to process the message.

Control is not returned to the RT Services Library until the capsule's triggered
transition has completed processing the message and run to completion. Each
capsule instance processes only one message at a time. It processes the current
message to the completion of the transition chain (which can consist of several code
snippets, such as a guard condition, an exit action, a transition effect, a choice point
condition, and an entry action) and then returns control to the RT Services Library to
wait for the next message to be dispatched. This scheme is referred to as run-to-
completion semantics. Typically, the code snippets involved in a transition chain
should be short and complete quickly, to result in rapid handling of messages.

Intra-thread and Inter-thread Communication
It’s important to understand the intra-thread and inter-thread communication
mechanisms and how messages are handled using the RT Services Library.

From the application’s perspective, there is no difference between sending a
message within a thread and sending a message across threads; the code to send
the message is still the same. There are, however, some performance implications,
and message sending across threads is approximately 10-20 times slower. Optimal
designs therefore place capsule instances that have intense message
communication with each other on the same physical thread.

The RT Services Library implements a simple message dispatch algorithm: Find the
highest-priority, non-empty message queue of the available controller objects. Then
take the message from the head of that queue and deliver it to the recipient capsule.
Then repeat, once the recipient capsule completes processing the message.

A message is delivered via a call to rtsBehavior(signal, port). This call is made
inside the message dispatch loop. Run-to-completion semantics is enforced as the
control is not returned to the loop until the capsule instance completes execution and
makes a “return”.

37

Message queues
Each physical thread has got its own RTController object with its own message
queue. More precisely, this is an array of message queues, one for each priority
level. The controller object organizes all its message in two kinds of such queues:
internalQ and incomingQ.
InternalQ holds messages that are ready to be dispatched by its controller.
Messages going between capsules incarnated on the same physical thread (the
same RTController object) will be placed into internalQ. Below is an illustration of
what this queue may look like at a particular point in time, when 7 messages are
ready to be dispatched.

As can be seen in the picture the queue is categorized according to priority level to
ensure that messages with higher priority get dispatched before messages with lower
priority.

IncomingQ is used for communication between threads. It holds messages coming
from other physical threads (other RTController objects). Messages from incomingQ
will first be moved to internalQ at an appropriate time in the controller loop and then
dispatched by the controller in the same way as other internal messages. IncomingQ
is organized in the same way as internalQ:

RTMessageQ internalQ[OTRTS_NUMPRIO];

RTMessageQ incomingQ[OTRTS_NUMPRIO];

38

Message structure and freeList of messages
Each message in the message queue is an object of the class RTMessage holding a
signal id (i.e. the id of the protocol event), priority, data pointer, information about port
and receiver, flags, and a data area of size RTMESSAGE_PAYLOAD_SIZE.

If the data to be sent fits into the message body data area, it will simply be copied
into the message. If the data does not fit inside the payload area, memory for the
data will be allocated in the system heap and freed after the message has been
received. The size of the data area (RTMESSAGE_PAYLOAD_SIZE) is configurable and the
default size is 100 bytes.

Each RTController object has a pool of allocated RTMessage objects that are free of
data and that are used when a new message should be sent. This pool is called the
”free list”:

RTMessage * freeList

A resource manager object (RTResourceMgr) allocates the initial freeList queue of
message objects at startup. The resource manager will allocate extra message
objects when a low threshold is passed and return these extra message objects to
the message pool as a high threshold is passed.

39

When a thread needs to send a message, the resource manager takes the next free
message object in the freeList of the corresponding RTController object and
returns it to the controller that will fill in all message information and send the
message. If there is no free message in the list, a new bunch of messages are
allocated in the system heap with the call to the function

unsigned msgAlloc(RTMessage * &, unsigned howMany = 50U)

By default, 50 new messages are added. Note that once allocated, message objects
are not freed back to the system heap but returned to the message pool.

Message objects are released from the message pool in RTController::freeMsg
when it reaches maxFreeListSize (100 by default), and only minFreeListSize (20 by
default) messages are left in the pool.

The free queue thresholds and data buffer size are statically configurable values and
it is necessary to rebuild the RT Services Library if these are changed.

Intra-thread message sending
When sending a message, the sending capsule calls RTController::send on its
controller, which in turn calls RTController::receive on the controller of the receiving
capsule. If both capsules are incarnated on the same physical thread, meaning they
are running on the same controller, the message will be appended to the appropriate
internalQ[message_priority] message queue according to the priority indicated in
the send statement. When the sending capsule has executed its current transition to
completion, the control is returned to the mainLoop, which then calls
RTController::dispatch function that will dispatch messages from internalQ.

40

Inter-thread message sending
For inter-thread communication, RTController::send is called on the sender's
controller/thread, and RTController::receive will be called on the receiver's
controller/thread which in this case is a different object. RTController::receive will
call RTController::peer_receive that will put a message into incomingQ on the
receiver's controller object. Access to incomingQ is protected by a mutex in the
peer_receive function. This ensures that several threads sending messages to the
same receiver thread will not interfere during access to the receiver's incomingQ
variable.

41

Message dispatch algorithm
Each RTController object runs its own mainLoop that is dispatching messages from
incomingQ. In common cases, each dispatch iteration performs the following actions:

• checks if there are any messages in incomingQ and moves all messages to
the end of internalQ.

• takes the first message with the highest priority in internalQ and removes it
from internalQ

• delivers this message to the receiver capsule by calling
receiver->rtsBehavior(signal_id, port_id) which may trigger a transition
in the receiver capsule's state machine

• frees the message

42

Messages from the incoming queues are moved to the corresponding internal
queues in the beginning of each dispatch iteration no matter which priorities they
have. Priorities are considered only when messages are selected from internalQ for
delivery.

Since the access to incomingQ is protected by a mutex, it is guaranteed that no
external thread will put any new messages to incomingQ while
RTController::acceptIncoming function is updating the queue. The same mutex also
guarantees that different external threads will not get access to incomingQ at the
same time.

Encoding and Decoding
The RT Services Library can encode messages and data values to a textual
representation. This can be useful in many situations, such as when tracing
information about what happens in the real-time application (for example using the
model debugger) or when sending events and data outside the current process (for
example when implementing a distributed application, or communicating with a cloud
server). Likewise, it can also decode such a textual representation to obtain an in-
memory copy of the original message or data value.

Support for encoding and decoding can be removed from the RT Services Library by
undefining the macros OBJECT_ENCODE and OBJECT_DECODE respectively.

Encoding and decoding is performed by means of the encode and decode functions
that are part of the Type Descriptor of a type. These functions are defined like this:

typedef int (*RTEncodeFunction)(const RTObject_class * type,
 const void * source,
 RTEncoding *);

43

typedef int (*RTDecodeFunction)(const RTObject_class * type,
 void * target,
 RTDecoding *);

The last parameter in these function types specifies the encoding or decoding object
to use for performing the encoding or decoding. The default encoding/decoding
implementation uses a compact ASCII representation (implemented by the classes
RTAsciiEncoding and RTAsciiDecoding). You will for example see this representation
being used when tracing using the model debugger:

You can manually invoke the encode function if you need a textual representation of
a data value. For example, here is the code for encoding the data of a received
message and printing it to stdout:

const RTObject_class* mt = msg->getType();
char buf[1000];
RTMemoryOutBuffer buffer(buf, 1000);
RTAsciiEncoding coding(&buffer);
mt->_encode_func(mt, msg->getData(), &coding);
buffer.write("", 1); // IMPORTANT: Terminate the buffer string before printing it!

std::cout << "ASCII encoding: " << buf << endl << flush;

Here it is assumed that the encoded string will contain less than 1000 characters, so
a fixed-size memory buffer is used when encoding the data. If you don’t want to make
an assumption about the size of the encoded string, you can instead use the class
RTDynamicStringOutBuffer which implements a dynamic string buffer.

In addition to the default ASCII encoding, the RT Services Library implements two
more encodings:

• Versioned ASCII representation
This is implemented by means of RTVAsciiEncoding and is identical to
RTAsciiEncoding except that the version number of the type descriptor is
included. The corresponding decoder is implemented in RTVAsciiDecoding.

• JSON representation
This is implemented by means of RTJsonEncoding. Encoding to JSON can for
example be useful when data is sent to a web server or to another real-time
application which expects JSON as a standard data format. The
corresponding decoder is implemented in RTJsonDecoding.

The JSON encoding fulfills the same API as the ASCII encoding, but in addition also
provides a function for encoding an entire message object. Here is an example that
encodes a received message to JSON using the RTDynamicStringOutBuffer
mentioned above.

RTDynamicStringOutBuffer buf;
RTJsonEncoding coding(&buf);
coding.put_msg(msg);
cout << "Received msg: " << buf.getString() << endl << flush;

44

The JSON encoding of the event shown in the trace example above will look like this:

{"event" : "event_with_class",
 "type" : "MyClass",
 "data" : {"a" : 8, "b" : false}
}

Neither RTJsonEncoding nor RTDynamicStringOutBuffer is included by default, so you
have to explicitly include these files from the RT Services Library if you want to use
them.

If you need to encode and/or decode messages or data values to/from another
representation, you can create your own class that inherits from RTEncoding and/or
RTDecoding. These classes contain virtual functions that can be overridden to
implement a custom encoding and/or decoding.

For more information about encoding and decoding, refer to this page.

45

https://secure-dev-ops.github.io/code-realtime/target-rts/encoding-decoding/

C++ RT Services Library Class Reference
In this chapter some important classes of the RT Services Library are described. You
often need to use these within the action code of a capsule to access the services
provided by the RT Services Library.

This reference does not describe private or restricted functions and variables from
the RT Services Library. Some features and classes in the RT Services Library are
internal to the library itself and are thus not intended to be accessed directly from
your application code.

RTActor
Every capsule, when generated as C++ code, is a subclass of RTActor. This common
base class for all capsules defines variables and functions which allow the RT
Services Library to communicate with the running capsule instances.

Since all action code added to a capsule is generated as part of a capsule class, the
action code has direct access to some useful variables and functions that are defined
in RTActor. You should only be calling the functions of RTActor or using variables that
are defined below.

Note that most variables on RTActor are private, because one capsule may not
manipulate another capsule's attributes. Use the public or protected functions
instead.

RTController *
context(void);

Gets the controller for the physical thread on which a capsule instance
is executing.
There are some public functions on the RTController class that can
be accessed this way. In particular, you may find it useful for printing
error information, as in the example below:
if(! port.ping().send())
{

 log.show("Error on physical thread: ");
 log.log(context()->name());
 context()->perror("send");
}

const char *
getCurrentStateString
(void) const;

Gets the name of the currently active state in the capsule's state
machine.

RTController::Error
getError(void) const;

Returns the most recent error within the current thread. The Error
enumeration is defined within the RTController class.
The error code is not reset by a subsequent successful primitive
function call. It should be called immediately following the failure of an
RT Services Library function call.

int getIndex(void)
const;

Gets the replication index of this capsule instance in its "home" role
(i.e. the capsule part where it was incarnated, or imported to). The

46

replication index is zero (0) based.
const char *
getName(void) const;

Gets the name of the capsule part in which this capsule instance is
running (where it was incarnated, or imported to).

const char *
getTypeName(void)
const;

Returns the name of the capsule from which this capsule instance
was incarnated.

int isType
(const char *
class_name)
const;

Queries the capsule class of this capsule instance. Returns 1 (true) if
this capsule instance is of class class_name, and 0 (false) otherwise.

if (isType("PhoneManagerCapsule"))
{
 log.log("This capsule role is of type: ");
 log.log(getTypeName());
}

virtual void
logMsg(void);

This function is called by the RT Services Library before a received
message is processed by a capsule instance (if so configured).

As implemented by the RTActor class, this function prints to the log
every message that was delivered to the capsule, depending on the
debug level. Since this function is defined as virtual, it can be useful in
some circumstances to override it within a capsule class in order to
provide some alternative general processing for each message.

To override this function, simply add a new operation to the capsule
with the same name and prototype. It can also be overridden for the
entire application by creating a new RTActor::logMsg() function,
compiling it, and including it in the model using the model link options.

const RTMessage * msg;

const RTMessage *
getMsg(void);

The msg variable can be accessed via the getMsg function. A pointer to
the message is returned.

Every capsule class has a variable msg which contains a pointer to the
current message delivered to a capsule instance. This attribute can be
used within transition code to retrieve the message that was
dispatched to the capsule instance.

Examples:

Retrieve the void * pointer to the data portion of the message:

const void *data_ptr = msg->data;

You can also use getMsg() to access the current message:

const void *data_ptr = getMsg()->getData();

For most cases, the data can be accessed directly using the rtdata
parameter that is passed to every transition code snippet:

// The following is commonly needed to make a copy of the data
// that was sent with a message
const ADataClass & data1 =

47

 *((const ADataClass *)getMsg()->getData());

// the above statement can be written using the rtdata
// parameter available in all state transition segments.
const ADataClass & data1 = *rtdata;

virtual void
unhandledMessage
(void);

This function is called by the RT Services Library when there is no
transition to trigger by the current message that is about to be
disptached. This happens when the capsule's rtsBehavior() function
is called to process a message and no corresponding trigger event is
found. The default unhandledMessage() implementation checks if the
message was received before the capsule has been initialized. This is
an unusual case, but can happen in certain special situations. If so it
calls messageReceivedBeforeInitialized(). Otherwise it calls
unexpectedMessage().

To override this function, simply add a new operation to the capsule
class with the same name and prototype. It can also be overridden for
the entire model by creating a new RTActor::unhandledMessage()
function, compiling it, and including it in the model using the model link
options.

virtual void
unexpectedMessage
(void);

This function is called when the RT Services Library has concluded
that the current message was unexpectedly received. The default
implementation prints a message to stderr. This function can be
overridden on a capsule class basis to provide any other functionality
that may be required when an unexpected message is received.

To override this function, simply add a new operation to the capsule
class with the same name and prototype. It can also be overridden for
the entire model by creating a new RTActor::unexpectedMessage()
function, compiling it, and including it in the model using the model link
options.

virtual void
messageReceivedBeforeIn
itialized
(void);

In certain special situations a capsule may receive a message before
it has been initialized, and then this function is called. The default
implementation saves the message in the defer queue so it is not lost
and later can be recalled when the state machine is about to be
initialized. This function can be overridden on a capsule class basis to
provide any other functionality that may be required, for example to
print an error if your application design doesn’t expect this situation to
occur.

To override this function, simply add a new operation to the capsule
class with the same name and prototype. It can also be overridden for
the entire model by creating a new
RTActor::messageReceivedBeforeInitialized() function, compiling it,
and including it in the model using the model link options.

virtual void This function is called by the RT Services Library when a state in a

48

rtgStateEntry
(void);

capsule state machine becomes active. This happens immediately
after the state has become active, before the entry action of that state
executes. The default implementation of this function does nothing.
The function can be overridden on a capsule that wants to perform
some common actions whenever a new state in its state machine
becomes active.

To override this function, simply add a new operation to the capsule
with the same name and prototype.

RTActorClass

An instance of this struct is created to represent the common external features (e.g.
service ports and capsule name) of each capsule in your model. It acts as the type
descriptor for a capsule. Only one instance of an RTActorClass structure exists for all
instances of a particular capsule. This way common metadata about the capsule can
be stored only once.

You can reference this capsule information object in your code, by referencing it by
name (the name of the RTActorClass object is the same as the name of the capsule).

The RTActorClass object is commonly required when using the Frame::incarnate
function. When incarnating (i.e. creating a new capsule instance) you always have to
specify which capsule class that should be instantiated in an optional capsule part.

Below the first parameter is the capsule part (RTActorRef) and the second the
capsule class (RTActorClass):

frame.incarnate(aCapsulePartName, ACapsuleClass);

You should not create new instances of RTActorClass, but only reference existing
objects.

An object of type RTActorClass cannot be passed as message data, but it is safe to
pass its address within a process.

This struct does not have any functions available, and is only used in conjunction
with the frame service to refer to specific capsule classes for manipulating the
dynamic structure of a model.

RTActorFactory

The RTActorFactory class implements a creation policy for capsule instances where
they are created by a user provided "create" function, and deleted using the regular
"delete" operator. It is used when incarnating capsule instances into optional capsule
parts using the RTFrame::incarnateCustom() function. The custom "create" function
allows you to, for example, pass additional arguments to a custom capsule
constructor. See Working with Optional Capsule Parts for an example.

RTActorFactory is an implementation of the RTActorFactoryInterface abstract

49

class. There is also another implementation of this abstract class called
RTDefaultActorFactory which implements a default policy for creating and destroying
capsule instances. The generated code uses that class as the base class when a
Create or Destroy function body has been specified for a fixed capsule part. This
allows for invoking a custom capsule constructor also when incarnating a fixed
capsule part. There is also a variant of this class called
RTDefaultActorFactory_NoCreate which is used in case the capsule that types the
capsule part has no default create function. This is the case if it is abstract or lacks a
default capsule constructor.

For more information about actor factories and custom capsule constructors, see the
article "Custom capsule constructors" in the Model RealTime documentation. You can
find this document in the built-in Help under Model RealTime User's Guide – Articles
– Modeling realtime applications.

RTActorRef

The RTActorRef class maintains information about each capsule part in your model.
For each capsule part in the composite structure of a capsule a variable of this type
is added to the RTActor subclass that is generated for a capsule.

You can reference this capsule part in code of the containing capsule by referencing
the capsule part by name. There are basically only two reasons why you would want
to directly access capsule parts:

1. To incarnate a capsule instance into a capsule part

For example, to specify which part to incarnate a capsule into, you would use the
name of the capsule part directly in the incarnate function:

frame.incarnate(devices, Device);

Here devices is the target capsule part in which you want to incarnate a capsule of
type Device.

2. To find the replication factor (i.e. size) of a capsule part

int size(void)const; Returns the replication factor (size) of a capsule part.
The function returns the size whether or not there is a capsule
instance currently incarnated at a specific slot. That is, it returns
the maximum number of capsule instances that can fit in the
capsule part.

RTActorId

The Frame service functions Frame::incarnate return an object of type RTActorId to
identify a particular capsule instance. The RTActorId object is used as a handle to
import the capsule instance into a plug-in capsule part, and to destroy or deport a
capsule instance.

50

In a capsule that has a Frame SAP called frame, the capsule gets it's RTActorId as
follows:

RTActorId id = frame.me();

Note that RTActorId is a pointer to the capsule. If the capsule is destroyed, the
pointer is invalid and the functions that use it will crash. It is important to guarantee,
at the application level, that the capsule is not destroyed when accessing the pointer.

int isValid(void)
const;

Returns 0 (false) if the id refers to an invalid capsule instance, and 1
(true) otherwise.
This function should not be used to test for the state of a capsule
instance (regardless of whether it is still alive). It should only be used
immediately after a call to the Frame::incarnate (or
Frame::incarnateCustom) function. Once the capsule instance has been
created, isValid always returns 1 (true), even if the capsule instance is
subsequently destroyed.
The example below shows how the capsule instance is checked after
calling the incarnate function. If the incarnation fails an error message is
printed to the log, and if the incarnation is successful the capsule
instance is immediately destroyed.
RTActorId capsule_id = frame.incarnate(terminal,
 LongDistanceTerminal, RTTypedValue(), callThread, 0);
if(! capsule_id.isValid())
 context()->perror("Incarnation failed: ");
else
 frame.destroy(capsule_id);

RTController

The RTController is an abstract class that defines the interface to a group of
executing capsule instances within a single thread of concurrency. There is one
controller object for each physical thread in the application. The controller object
maintains information about the state of the thread as a whole, including the most
recent error. Since the majority of functions in the RT Services Library return either 1
(true) if successful, and 0 (false) otherwise, the controller object can provide the
precise cause of failure.

Refer to the error values description for a complete listing of the RT Services Library
run-time errors.

From within a capsule instance, you can retrieve a pointer to its controller by calling
the RTActor::context() function. You can also use RTActor::getError() to obtain
the error value maintained by the controller.

void abort(void); Calling this function on any controller will terminate the controller
on which the capsule instance is running which in turn destroys all

51

capsule instances running on that controller. Messages that are
waiting in the controller to be dispatched are deleted.

If this is called on the main thread, then all threads are destroyed
and the process quits.

context()->abort();

Error getError(void)
const;

Returns the value of the most recent error within the thread.
The error code is not reset by a subsequent successful primitive
function call. It should be called immediately following the failure
of an RT Services Library function call.

const
char * name(void) const;

Returns the name of the controller. Controllers are named based
on the physical thread on which they run. The assigned physical
thread names are taken from the thread specification in the
transformation configuration. This method is a way of allowing
capsules to find out what thread they are running on.

void
perror(const char *
error_string = "error");

The optional parameter error_string is the string to be printed to
stderr along with the current error string as returned by the
RTController::strerror function. By default, the string "error"
will be printed.
if(! aPort.ack().send())
 context()->perror("Error sending ack");

Output:
Error sending ack: Port not connected.

const char *
strerror(void) const;

Returns a description of the current error code on the current
RTController, that is, the controller for a physical thread.

RTExceptionSignal

The Exception Service, like other run-time system services, is accessed through an
exception port. Exceptions manifest themselves in the form of RT Services Library
messages arriving on appropriate exception service ports. Any capsule class that
needs to raise or handle exceptions must define an exception port in its structure.
Exception ports are instances of the class Exception.

Exceptions are defined as events in the exception service protocol, and an
application can raise these exceptions by sending the events to an exception port.

RTExceptionSignal arithmeticError(const RTTypedValue &);

RTExceptionSignal error(const RTTypedValue &);

RTExceptionSignal notFoundError(const RTTypedValue &);

RTExceptionSignal notUnderstoodError(const RTTypedValue &);

RTExceptionSignal serviceAccessError(const RTTypedValue &);

RTExceptionSignal streamError(const RTTypedValue &);

52

RTExceptionSignal subclassResponsibilityError(const RTTypedValue &);

RTExceptionSignal timeSliceError(const RTTypedValue &);

RTExceptionSignal userError(const RTTypedValue &);

int raise(void); Call this function to raise the exception that is represented by the specific
RTExceptionSignal object.

The exception must be raised by the application. The RT Services Library
does not automatically raise any exceptions by itself.

With userError(), you can provide any relevant data that is required to be
sent along with the exception.

Example:

// How to handle service errors using the exception service
if(! myPort.start().send())
 ex.userError(RTString("Send on ring port failed.")).raise();

RTFrame

The Frame service is accessed via Frame ports, declared in the structure of a
capsule class. Frame ports are instances of the class RTFrame. The functions take, as
their parameters, either of:

• static capsule part names RTActorRef (design-time names of capsule parts), and
capsule class names RTActorClass

• dynamic capsule instance RTActorId (generated at run time)

The Frame class also provides a number of query primitives that can be used to get
information about the structure of the model. These functions may be useful in some
circumstances, particularly for writing generic capsules that must deal with very
dynamic structures.

int classIsKindOf
(const RTActorClass & subClass,
 const RTActorClass & superClass
);

Tests whether a particular capsule class is a subclass of
another.

subClass is the name of the capsule class in question.
superClass is an capsule class which, if it is the same as, or a
superclass of, the class in question, the method returns 1, and
otherwise returns 0.

const char * className
(const RTActorClass &); The function returns the name of the specified capsule class in

the form of a null-terminated string.

53

The RT Services Library stores run-time information about each
capsule class in the model using a separate class (often
referred to as a metaclass). The information is contained within
an RTActorClass object. There is one object for each capsule,
having the same name as that of the capsule that it represents.

const RTActorClass & classOf
(const RTActorId & incarnation); The function returns the capsule class of the specified capsule

instance. If an error occurs the EmptyActorClass is returned.

int deport(const RTActorId &
instance, RTActorRef & role); Removes a capsule instance from a plug-in capsule part.

instance is the id of the capsule instance to be removed. role is
the capsule part from which the capsule instance is to be
removed.

The function returns false (0) if an error occurred, and true (non-
0) otherwise.

The function can fail if:

• the capsule instance being removed was not present in the
capsule part

• the capsule part is not uniquely identified.

int destroy
(RTActorId & instance);
int destroy
(RTActorRef & role);

Using destroy with the capsule id will destroy the capsule
instance and all of its contained capsule parts.

Instead of destroying only one capsule instance, you can
destroy all instances contained in a capsule part. The capsule
part can only be destroyed by the immediate container of that
part.

These functions return false (0) if an error occurred, and true
(non-0) otherwise.

Example:

Receive the capsule instance identifier from the capsule
instance to destroy:

RTActorId cid = rtdata;
frame.destroy(cid);

Or you can destroy all instances by specifying the capsule part
instead:

frame.destroy(terminal);

int import
(const RTActorId & instance, Imports a capsule instance into a plug-in capsule part.

54

 RTActorRef & dest,
 int index = -1);
int import
(RTActorRef & actor,
 RTActorRef & dest,
 int index = -1);

instance is the instance id of the capsule instance which is to
be imported.
dest is the name of the capsule part into which the capsule
instance will be imported. The capsule part must be in the
immediate decomposition frame within the calling capsule
instance.
index is the replication index within the plug-in capsule part into
which the capsule instance is to be imported. If unspecified, the
capsule instance is imported into the first available index.
Using an alternate form of the function, you can provide a
capsule part name instead of the capsule instance id. To use
this form of import, the capsule part must not be replicated, and
a valid capsule instance for this part must be active. This
function will import the capsule instance held by the part (only
one, since the part is not replicated) into the destination capsule
part.
These functions return false (0) if an error occurred, and true
(non-0) otherwise.

The function fails in the following cases:

• if the capsule instance no longer exists.

• the class of the capsule instance is not a compatible class.

• a port of the instance that is bound in the imported capsule
port is already bound elsewhere.

• the target capsule part is not uniquely identified.

RTActorId
incarnate(RTActorRef & role);

RTActorId
incarnate(RTActorRef & role,
 const RTActorClass &
capsule_class);

RTActorId
incarnate(RTActorRef & role,
 const void * data,
 const RTObject_class * type,
 RTController * log_thread,
 int index);

RTActorId
incarnate(RTActorRef & role,
 const RTActorClass &
capsule_class,
 const void * data,
 const RTObject_class * type,
 RTController * log_thread,
 int index);

Creates capsule instances in optional capsule parts. This
function can be used to create and run capsule instances on
different logical threads.

The functions return a valid RTActorId if the call is successful.
To test if the call failed, use the RTActorId::isValid function on
the returned object. For example:

RTActorId ind = frame.incarnate(mySubcapsule);
if (ind.isValid())
...//use index
else

...//getError() to see what's wrong, don't use index

If the function fails you can use the RTActor::getError()
function to find out why it failed.

There are alternate forms of the incarnate function which leave
out the RTActorClass parameter (defaulting to the class
specified for the capsule part) and for sending different types of
initialization data to the new instance, either as RTDataObject

55

RTActorId
incarnate(RTActorRef & role,
 const RTDataObject & rtdata,
 RTController * log_thread = 0,
 int index = -1);

RTActorId
incarnate(RTActorRef & role,
 const RTActorClass &
capsule_class ,
 const RTDataObject & rtdata,
 RTController * log_thread = 0,
 int index = -1);

RTActorId
incarnate(RTActorRef & role,
 const RTTypedValue & info,
 RTController * log_thread = 0,
 int index = -1);

RTActorId
incarnate(RTActorRef & role,
 const RTActorClass &
capsule_class ,
 const RTTypedValue & info,
 RTController * log_thread = 0,
 int index = -1);

RTActorId
incarnateCustom(RTActorRef &
role,
 RTActorFactory & factory,
 int index = -1);

RTActorId
incarnateCustom(RTActorRef &
role,
 RTActorFactory && factory,
 int index = -1);

RTActorId
incarnateCustom(RTActorRef &
role,
 const void * data,
 const RTObject_class * type,
 RTActorFactory & factory,
 int index = -1);

RTActorId
incarnateCustom(RTActorRef &
role,
 const void * data,
 const RTObject_class * type,
 RTActorFactory && factory,

classes or anything with a type descriptor.

role is the name of the optional capsule part contained in the
structure of the capsule instance making the incarnate call.

capsule_class [optional] is the name of the class that should
be instantiated into the optional capsule part. If absent, the
incarnated class defaults to the class of the capsule part. You
can also use the predefined variable EmptyActorClass to
explicitly specify that the incarnated class defaults to the class of
the capsule part.

data, type, rtdata, info [optional] is the data to be sent to
the created capsule instance. The data sent is accessible in the
capsule instance’s initial transition. Be sure to specify if no data
is to be sent. See the examples below.

log_thread is the name of the logical thread (given in the thread
configuration in the transformation configuration) where you
want the incarnated capsule instance to run. If no thread is
specified the capsule instance is incarnated in the thread of the
caller.

index is the replication index into which the new capsule
instance should be incarnated. This is only valid when
incarnating capsule instances into replicated capsule parts.
Indexing begins at 0, that is index 0 is the first capsule instance.
If specified as -1, the capsule will be incarnated in the first free
slot.

The first free slot is the last slot number that was made available
after a capsule was deleted. For example, assume you created
and then deleted capsules 0, 1, 2, 3 in this order. The list of free
slots is as follows in order: 3, 2, 1, 0, 4, 5, 6, 7, 8, 9, ...

The incarnateCustom function works in a similar way but allows
you to provide an RTActorFactory to more exactly control (using
code) how to create the capsule instance. There is also an
overload of incarnateCustom which accepts a temporary
RTActorFactory object which allows you to define the factory
object inline.

To use the frame functions, create a port using the Frame
protocol.

Examples:

This will incarnate a capsule instance into the optional capsule
part named 'terminal'. No initialization data is sent to the capsule
instance. The incarnated capsule defaults to the type of the

56

 int index = -1);
capsule part:

RTActorId capsule_id;
capsule_id = frame.incarnate(terminal);

if(! capsule_id.isValid())
context()->perror("Incarnation failed: ");

If you want to incarnate the incarnated class of the capsule part
and send initialization data you can specify the EmptyActorClass
variable as the second argument:

RTActorId capsule_id;
ControlData data(15, 8.98);

capsule_id = frame.incarnate(terminal, EmptyActorClass,
&data, &RTType_ControlData, (RTController *)0, -1);

This will incarnate a capsule instance into the optional capsule
part at index 0, with initialization data, on a specific logical
thread.

RTActorId capsule_id;
PrinterData data(14, "ott05");

capsule_id = frame.incarnate(
device, // capsule part name
Printer, // capsule
&data, // initialization data
&RTType_PrinterData, // type descriptor
callThread, // logical thread name
0); // index

if(! capsule_id.isValid())
 context()->perror("Incarnation failed: ");

The following could be used to incarnate a capsule instance
without initialization data, but with a specific logical thread or a
replication index:

RTActorId capsule_id;
PrinterData data(14, "ott05");

capsule_id = frame.incarnate(device, Printer,
(const void *) 0, // initialization data
(const RTObject_class *) 0, // type descriptor
PrintThread, // logical thread
0); // replication index

if(! capsule_id.isValid())
 context()->perror("Incarnation failed: ");

RTActorId incarnationAt
(const RTActorRef & part,
 int index);

Retrieves a particular capsule instance of a capsule part.

Returns the instance id of the capsule instance at the specified

57

capsule role index. The index is zero-based.

RTInSignal

This class is used to work with incoming events defined within a protocol. As
explained in RTProtocol, each event defined on a protocol becomes a function. For
incoming events the functions return an RTInSignal object on which you can specify
what action to perform with the event.

The only actions defined on incoming events are to manipulate the defer queue, that
is to retrieve specific messages for the event that have been deferred.

For example if a message was deferred at some point in a capsule's behavior:

getMsg()->defer();

you can later recall the message by calling:

aPort.ack().recall();

int purge(void);
If a port is replicated then the purge function will delete all deferred
messages for the event on all port instances. Returns the number of
deleted messages from the defer queue.

int purgeAt(int index);
If a port is replicated then this function will delete deferred messages
for the event on the specified port instance only.

index is a port instance index on which to delete deferred messages.
Returns the number of messages that were deleted from the defer
queue.

int recall(int front = 0);
Recall one deferred message for the event on all port instances.

front [optional] is a boolean int that indicates whether the
message should be recalled to the front of the system message
queue. If false, or left unspecified, the message is sent to the back of
the message queue. By recalling to the front, it is possible to avoid
overtaking of messages.

Returns the number of recalled messages.

There is no time-limit on deferral. Applications must take precautions
against forgetting messages on defer queues.

This function recalls the first deferred message of this event on any
port instance. To recall the first message of any event, use the
RTProtocol::recall function.

int recallAll
Recall all deferred messages for the event on all port instances.

58

(int front = 0);

Returns the number of recalled messages.

There is no time-limit on deferral. Applications must take precautions
against forgetting messages on defer queues.

This function recalls ALL deferred messages of this event on ALL port
instances. To recall all messages of any event, use the
RTProtocol::recallAll function.

int recallAt
(int index,
 int front = 0);

Recall one deferred message for the event on a specific port
instance. Returns the number of recalled messages.

There is no time-limit on deferral. Applications must take precautions
against forgetting messages on defer queues.

This function recalls the first deferred message of this event on a
specific port instance. To recall the first message of any event, use
the RTProtocol::recallAt function.

int recallAllAt
(int index,
 int front = 0);

Recall all deferred messages for the event on a specific port
instance. Returns the number of recalled messages.

There is no time-limit on deferral. Applications must take precautions
against forgetting messages on defer queues.

This function recalls ALL deferred messages of this event on a
specific port instance. To recall all messages of any event, use the
RTProtocol::recallAllAt function.

RTLog

The Log service is accessed via ports typed by the Log protocol. In C++ they become
instances of the class RTLog. A log port only provides functions to call and does not
pass any information in the reverse direction. The functions available for accessing
the system log are listed below.

Currently all log service output is directed to stderr. This means that the open(),
clear(), and close() functions should not be used.

Note that to flush the log you must call log.commit(). If you forget to flush the log you
may not see messages in the console until the underlying stream buffer is full.

void show(const char * data);
void show(char data);
void show(double data);
void show(float data);
void show(int data);
void show(long data);
void show(short data);

log writes data as an ASCII string to the log with a trailing
carriage return.

show writes data as an ASCII string to the log with NO leading
or trailing carriage returns.

59

void show(unsigned data) ;
void show(ushort data) ;
void show(ulong data) ;
void show
(const RTDataObject & data);
void show
(const void * data,
 const RTObject_class * type);
void show
(const RTTypedValue & data);

void log(const char *);
void log(const RTString &);
void log(char);
void log(double);
void log(float);
void log(int);
void log(long);
void log(short);
void log(const RTDataObject &);
void log
(const void *,
 const RTObject_class *);
void log(const RTTypedValue &);

data, type is the object, type information, or simple type that
should be written to the log.

The log knows how to display simple types, but it can also
display any user-defined type as well. To display a user-
defined type, it must have a type descriptor defined with a
function to encode the object. The log will simply call this
encode function, passing the ASCII encoder as argument.

The only difference between the log() and show() functions is
that log() outputs a carriage return after the data is output to
the log.

Examples:

// Print as an ASCII string the contents of a class
log.show(&SubscriberData, &RTType_SubscriberData);

// Print a string
log.show("Timer has expired");

// Print an int
log.show(19);

void cr(void);
void crtab(int num_tabs = 1);
void space(void);
void tab(void);
void commit(void);

These are various functions that can be used to output
predefined characters to the log. commit() will output all
buffered characters in the log.

num_tabs is the number of tabs to insert, the default is one (1).
Tab settings are defined by the system and cannot be altered
by the user.

log.cr();
log.space();
log.tab();
log.commit();

// The previous commands can be supplied using show()
log.show("\n \t");
log.commit();

RTMessage

This class is the data structure used within the RT Services Library to represent
messages that are communicated between capsule instances. The messages that
are sent between capsules contain a required event name (which identifies the
message), an optional priority (relative importance of this message compared to
other unprocessed messages on the same thread - defaults to General), and optional
event data.

You will most often use the functions on the RTMessage class to manipulate the
messages that trigger transitions.

60

Do not treat an RTMessage as an object that can be stored. Instead, you should
extract the relevant information from the message and store it separately. The RT
Services Library will delete the RTMessage object when control returns from the
transition that was triggered by dispatching the message. Applications should
therefore treat the msg field of an RTActor and all data addressed beyond that pointer
as read-only.

int defer(void) const; Defer the current message against the receiving port's defer queue.
Returns true (1) if the message was successfully deferred and false (0)
otherwise. An error will be returned if you try to defer an invoked
message or a message which has already been deferred.

Deferred messages can be recalled using the functions defined on the
RTInSignal class.

In the transition where a message is to be deferred you would defer the
message as follows:

getMsg()->defer();

void *
getData(void) const;

Returns an untyped pointer to the data that was sent along with a
message.

Note that it is recommended to use the predefined rtdata parameter to
access the typed data of a message in a transition. For example:
const ADataType & dt = *rtdata;

In cases where there are multiple triggers for a transition you will have
to cast the received data depending on the event that triggered the
transition.

const ADataType & dt2 = *(ADataType *)(getMsg()->getData());

int
getPriority(void) const; Returns the priority of the message.

const char *
getSignalName(void)
const;

Returns the name of the protocol event of the message.

log.show("Event named: ");
log.log(getMsg()->getSignalName());

const RTObject_class *
getType(void) const;

Returns a pointer to an RTObject_class which contains the type
information that describes the data in the message, or (RTObject_class
*)0 if the event does not carry any data.

int isValid(void) const; Returns 1 (true) if the message has been initialized from a valid event
and potentially some data, and 0 (false) otherwise.
This method is intended to verify that the returned message has been
properly filled by the reply to an RTOutSignal::invoke() function call.

RTOutSignal *
sap(void) const;

Returns a pointer to the port instance on which this message was
received, or (RTProtocol *)0 if called in the initial transition.

// find out where the message was received,
// and send a message back on that same port

61

RTProtocol * port = msg->sap();
if(port != (RTProtocol *)0)
 ((MyProtocol::Base *) port)->hello().send();

int sapIndex(void)
const;
int sapIndex0(void)
const;

Returns the index of the port on which the message was received. The
sapIndex function returns a one-based index (index values begin at 1)
while sapIndex0 is 0 based.

Use to send a message to a particular port instance, as follows:
int idx = msg->sapIndex0();
port.hello().sendAt(idx);

RTObject_class

The RTObject_class is a structure that contains information describing a data type.
These type descriptors may be generated automatically for most types in the model.
The RT Services Library uses the information in the type descriptors to initialize,
copy, destroy, encode, and decode objects of the corresponding type.

Using type descriptors has several advantages:

• Arbitrary data structures can be used in models even if they cannot be expressed
in Model RealTime or are provided by third-parties.

• Encoding and decoding can be extended to arbitrary data structures.

• More efficient handling of data is possible by avoiding memory allocation and de-
allocation. By adding the size to the type descriptor, the RT Services Library can
decide when a payload area of a message is large enough to hold the data to be
sent.

• Any user-defined type can be sent (by value), using the copy and destroy
functions in the type descriptor, and inspected via the observability interface
using the init, encode and decode functions.

The important thing to remember is that Model RealTime will generate these
descriptors for most classes which are defined using basic types (see the list defined
in the RTObject_class.h file located in <install
dir>/rsa_rt/C++/TargetRTS/include). If classes contain more complicated
structures you can write your own type descriptor functions.

A type is described by one of these structures.

Field Meaning

_super The base type of this type

_name The name of this type

_version The version of this type

_size The byte size of this type (sizeof)

62

_init_func The default constructor for this type

_copy_func The copy constructor for this type

_decode_func The decode function for this type

_encode_func The encode function for this type

_destroy_func The destructor for this type

_num_fields The number of fields or array elements

_fields The field types or array element type

Whenever data is passed to the RT Services Library, you need to provide the type
descriptor, along with the data to be sent. If the type descriptor is not provided to the
RT Services Library, data objects will not be observed by the model debugger, or
sent to another process.

For every generated class in your model there is a type descriptor created which is
called RTType_<typename>. For example, if you define a class called
RobotControlData the generated type descriptor would be:

const RTObject_class RTType_RobotControlData;

If the model compiler is unable to automatically generate a type descriptor for a
class, because it contains an attribute with a too complex type, you will be warned
when building the model. For example:

14:05:41 : WARNING : CPPModel::CustomEncoding::impl : Unable to find a descriptor
for the type of this property, deselect 'Generate Descriptor' or specify a valid
descriptor in the 'Type Descriptor' property.

You can provide the type descriptor for a generated class to any RT Service Library
function that requires it.

RTOutSignal

This class is used for working with outgoing events defined within a protocol. As
explained in RTProtocol, each event defined on a protocol becomes a function. For
outgoing events the functions return an RTOutSignal object on which you can specify
what action to perform on the event. For example, to send an event first initialize the
RTOutSignal by calling the function on the port, then specify an action to perform on
the event:

port.ack().send();
port.hello(1089).sendAt(1);

int invoke(
RTMessage * replyBuffers); Synchronous message broadcast to all port instances.

63

int invoke(); The function returns the number of replies received. If it returns 0
(false), the call failed. An invoke call can fail if the port is not
connected (no connection to the receiver end port). An error will be
returned if you try to invoke an event across a physical thread
boundary.

replyBuffers is a user-supplied message object that stores the reply
message(s) resulting from the invoke. The user is responsible for
allocating and deleting this data when it is no longer required.
Typically a local variable will be declared to hold the returned
message(s). To verify the validity of the returned message(s) call
RTMessage::isValid() once the invoke returns.

If a port is replicated all port instances will be invoked. Use
RTOutSignal::invokeAt() to invoke a specific port instance.

An invoke is a synchronous send, and the sender is blocked until
each receiver has processed the message and sent back a reply.
Run-to-completion semantics is enforced, such that an invoke has the
same semantics as a function call. Note that the data field is not
copied on invoke (since the receiver always runs in the same thread).

Do not use invoke in the initial transition of a capsule as the system
may still be processing initialization messages. Also, because of its
blocking nature, invoke cannot be used across threads or capsules
connected through a network.

RTMessage replies[aPort.size()];
aPort.ack().invoke(&replies);
for(int i = 0; i < aPort.size(); i++)
{
 if(replies[i].isValid())
 //code to handle valid reply
 else
 //code to handle invalid reply
}

The receiver of the invoke must use RTOutSignal::reply() to
respond to the invoke. Data can be optionally sent back with the
reply.

rtport->nack().reply();

However, if the version of invoke without reply buffer parameter is
used, then the reply is implicitly made when the receiver has
processed the message.

int invokeAt(
 int index,
 RTMessage *
replyBuffer);

int invokeAt(
 int index);

Synchronous message send to a specific port instance.

The function returns 1 (true) if the call is successful and 0 (false), if
the call failed. An invoke can fail if the port is not connected (no
connection to the receiver end port). An error will be returned if you

64

try and invoke across a physical thread boundary.

index is the port replication index of the port instance on which the
message should be sent.

replyBuffer is a user-supplied message object that stores the reply
message(s) resulting from the invoke. The user is responsible for
allocating and deleting this data when it is no longer required.
Typically a local variable will be declared to hold the returned
message(s). To verify the validity of the returned message(s) call
RTMessage::isValid() once the invoke returns.

An invoke is a synchronous send, and the sender is blocked until
each receiver has processed the message and sent back a reply.
Run-to-completion semantics are enforced, such that an invoke has
the same semantics as a function call. Note that the data field is not
copied on invoke.

Do not use invoke in the initial transition of a capsule as the system
may still be processing initialization messages. Also, because of its
blocking nature, invoke cannot be used across threads or capsules
connected through a network.

RTMessage reply;
aPort.ack().invokeAt(0, &reply);
if(reply.isValid())
 // code to handle valid reply
else
 // code to handle invalid reply

The receiver of the invoke must use RTOutSignal::reply() to
respond to the invoke. Data can be optionally sent back with the
reply.

rtport->nack().reply();

However, if the version of invokeAt without reply buffer parameter is
used, then the reply is implicitly made when the receiver has
processed the message.

int reply (void); Used to respond to a synchronous message.

Returns 1 (true) if the reply is successful, and 0 (false) otherwise.

If the caller has provided a reply buffer when invoking the message,
then the receiver must use RTOutSignal::reply to respond to the
invoke. Data can be optionally sent back with the reply.

rtport->nack().reply();

int send(
 int priority =
General);

Asynchronous message broadcast to all port instances.

The function returns a count of the successful sends (remember that

65

ports can be replicated in which case this function will broadcast to all
port instances). A send can fail if the port is not connected (no
connection to the receiver end port).

priority [optional] specifies the priority at which this message
should be sent. The default priority is General. A message priority is
interpreted as the relative importance of a message with respect to all
other unprocessed messages on a thread. The priority evaluates to
one of the defined global priority values.

Since a port can be replicated, the send function effectively sends a
message through all instances of the port (broadcast). If you want to
send to only one instance of a replicated port, use the
RTOutSignal::sendAt() function.

// In this case the ack signal does not require
// data to be sent with the signal.

aPort.ack().send();

It is always good practice to check the return codes.

if(! aPort.ack().send())
 context()->perror("Error with send");

You can also send data with a message.

// Sending some data by value, that is a copy of the data is
// sent.
SomeDataClass mdata("123-4356", "Ottawa");
aPort.Info(mdata).send();

int sendAt(
 int index,
 int priority =
General);

Asynchronous message send to a specific port instance.

The function returns 1 (true) if the call succeeded and 0 (false)
otherwise. A send call can fail if the port is not connected (no
connection to the receiver end port) or an invalid replication index
was provided.

index is the port replication index of the port instance on which the
message should be sent.

priority [optional] specifies the priority at which this message
should be sent. The default priority is General. A message priority is
interpreted as the relative importance of a message with respect to all
other unprocessed messages on a thread. The priority evaluates to
one of the defined global priority values.

This function is used instead of RTOutSignal::send() to send a
message to a specific instance of a replicated port.

// In this case the ack signal does not require
// data to be sent with the signal.
aPort.ack().sendAt(5);

66

// send to the port instance on which the current
// message was received
int idx = getMsg()->sapIndex0();
rtport->ack().sendAt(idx);

RTProtocol

For each protocol class in your model, two subclasses of the RTProtocol class are
generated, one for each direction of communication using the events defined in the
protocol. These two subclasses are called the base and conjugate protocol class
respectively. Each port defined on a capsule is generated as a member variable of
the generated C++ capsule class. This port variable has the same name as the port,
and is typed with either the base or conjugate protocol class, depending on if the port
is declared as conjugated or not.

void bindingNotification
(int on_off);

Use this function to request notification of the creation and
destruction of bindings to this port. The events sent to the port by
the RT Services Library when binding notifications are enabled are
rtBound and rtUnbound.

on_off is a boolean int. If called with 1 (true) the port will receive
messages as ports become bound or unbound. Calling the function
with 0 (false) will prevent such messages from being sent, but will
not purge any messages already queued.

No messages are sent for ports which are bound prior to the call of
this function.

int
bindingNotificationRequested
(void) const;

Use this function to request status of notification for this port.
Returns 1 (true) if notification has been enabled for this port, and 0
(false) otherwise.

int deregisterSAP(void);
Deregisters an unwired end port (SAP). Returns 1 (true) if the
deregistration of the service name was successful, and 0 (false)
otherwise.

When an SAP is deregistered when it is currently connected to a
SPP, the connection is terminated.

int deregisterSPP(void);
Deregisters an unwired end port (SPP). Returns 1 (true) if the
deregistration of the service name was successful, and 0 (false)
otherwise.

When an SPP is deregistered all connected port instances are
disconnected from all connected SAPs. Although the SAPs are
disconnected they remain registered, and available to be re-

67

connected.

char * getRegisteredName
(void) const; Get the name that an unwired port has registered with the layer

service.

int indexTo(RTActor *)
const;

Find the smallest replication index (0-based) which is connected to
the given capsule instance. The result is -1 if there is no such index
or the id is invalid.

This example demonstrates how to find the port index that is
connected to a newly incarnated capsule part. The port is a
replicated port and role1 is a capsule part in the structure of a
capsule on which this code is run:
RTActorId aid = frame.incarnate(role1);
int port_index;
if(aid.isValid())
{
 port_index = port.indexTo(aid);
 if(port_index != -1)
 port.Signal().sendAt(port_index);
} else
 context()->perror("Error incarnating role1:");

int isBoundAt(int index)
const;

Return true (1) if the given replication index (0-based) is connected
to another port and false (0) if it is not connected.

int isIndexTo(
 int index,
 RTActor *) const;

Returns true (1) if the given port instance index (0 based) is bound
to the specified capsule instance.

int isRegistered(void)
const; Returns true (1) if an unwired port has been registered with the layer

service and false (0) otherwise.

int purge (void);
Empties the defer queue of all port instances without recalling any
deferred message. Returns the number of messages deleted from
the defer queue.

To delete deferred messages for one port instance only, use
RTProtocol::purgeAt.

int purgeAt(int index);
Empties the defer queue of a specified port instance without
recalling any deferred messages. Returns the number of messages
deleted from the port instance defer queue.

To delete deferred messages for all port instances, use
RTProtocol::purge.

int recall(void); Use this function to recall a deferred message on all instances of
this port for processing. Recalls from the back of the queue. Returns
the number of messages recalled from the defer queue (either 0 or

68

1).

Calling recall on a port gets the first deferred message from one of
the port instances. Messages are recalled behind other queued
messages.

There is no time-limit on deferral so applications must take
precautions against forgetting messages on defer queues.

This function recalls the first deferred message on any port
instance. To recall the first message on one specific port instance of
a replicated port, use the RTProtocol::recallAt() function.

The first deferred message on any instance of the replicated port
named port1 is recalled as follows:

port1.recall();

int recallAll (void); Calling recallAll on a port will get all the deferred messages from
each of the port instances. Messages will be recalled starting from
the back of the main queue. Returns the number of recalled
messages.

To recall all messages on only one instance of a port with replication
factor > 1, use the RTProtocol::recallAllAt() function.

int recallAllAt(
 int index,
 int front = 0);

To recall all deferred messages on a specified port instance index.
front specifies whether recalled messages should be queued
ahead (non-zero) or behind (0) other queued messages. Returns
the number of recalled messages.

int recallAllFront(void); To recall all deferred messages on all port instances. Recalls to the
front of the queue. Returns the number of recalled messages.

int recallAt(
 int index,
 int front = 0);

To recall a deferred message on a specific instance of this port for
processing. front specifies whether recalled messages should be
queued ahead (non-zero) or behind (0) other queued messages.
Returns the number of recalled messages (either 0 or 1).

The first deferred message on the port instance at index 3 of the
replicated port named port1 is recalled as follows:

port1.recallAt(3);

int recallFront(void); This function recalls the first deferred message on any port
instance. Calling recallFront on a port gets the first deferred
message from one of the port instances, starting from the first
(instance 0). Messages are recalled to the front main queue.
Returns the number of recalled messages (either 0 or 1).

69

int registerSAP
(const char * service); Registers an unwired end port (SAP) with the layer service (as a

"client").

Returns 1 (true) if the registration of the service name was
successful, and 0 (false) otherwise. The registration can fail if this
function is called on a port instance which is not an unwired end
port. If this SAP is already registered with this same name, the
function returns 1.

service is a string that is used to identify a unique service name
under which SAPs and SPPs will connect.

If this function is invoked on an SAP which is already registered with
a different name, then the original registered name is automatically
deregistered, and the SAP is registered with the new name.

When an SAP is registered, it does not necessarily mean that the
port has been connected to an SPP. The successful completion of
the register function simply indicates that the name has been
registered. For example, if the SAP is registered with no
corresponding SPP, the connection is only made later when an SPP
is registered. The SAP registration is buffered until an SPP is
registered with the same service name.

If application registration has been selected for an SAP (protected
unwired end port) or SPP (public unwired end port) registration is
handled automatically by the RT Services Library.

int registerSPP
(const char * service); Registers an unwired end port (SPP) with the layer service (as the

"provider").

Returns 1 (true) if the registration of the service name was
successful, and 0 (false) otherwise. The registration can fail if this
function is called on a port which is not an unwired end port. If this
SPP is already registered with this same name, the function returns
1.

service is a string that is used to identify a unique service name
under which SAPs and SPPs will connect.

If this function is invoked on an SPP which is already registered with
a different name, then the original registered name is automatically
deregistered, and the SPP is registered with the new name.

When an SPP is registered, it does not necessarily mean that the
port has been connected to an SAP. The successful completion of
the register function simply indicates that the name has been
registered. For example, if an SPP is registered with no
corresponding pending SAP registrations, the connection will be
made later when an SAP is registered. The SPP registration is

70

buffered until an SAP is registered with the same service name.

If application registration has been selected for an SAP (protected
unwired end port) or SPP (public unwired end port) registration is
handled automatically by the RT Services Library.

int size(void) const;
Returns the replication factor (i.e. the size as defined by the
multiplicity) of the port.

Remember that port instances are indexed in the RT Services
Library as 0 based. That means that if a port has a cardinality of N,
you should only reference instances using index numbers 0..N-1.

for(int i = 0 ; i < port.size(); i++)
 port.ack().sendAt(i);

RTSymmetricSignal

This class is used for symmetric events defined within a protocol. A symmetric event
is defined by having both an incoming and an outgoing event with the same name
and data class.

As explained in RTProtocol, each event defined in a protocol becomes a function.
Since symmetric events can be both incoming and outgoing you can perform the
combined actions of both RTOutSignal and RTInSignal on these classes.

port.talk.send(); // to send the talk event
port.talk.recall(); // to recall all deferred talk events

RTTimerId

Timing services use RTTimerId as an identifier for timer requests. The timer identifier
is returned by a request to Timing::informIn(), Timing::informAt() or
Timing::informEvery(). The timer identifier can be used subsequently to cancel the
timer.

int isValid(void);
Returns true (1) if the timer identifier is a valid timer id, and 0 (false)
otherwise.

This function only tells if RTTimerId points to a valid (existing) timer
object and if RTTimerId can be used to manipulate the timer. This
function does not return the exact state of the timer. For example, it
does not differ if the timer is still active, or if the timer has already
timed out but the timeout event has not yet been delivered; or if the
timer has been canceled or a non-periodic timer has timed out.

The function can be used to test the result of a timer request.

RTTimerId tid = timer.informIn(RTTimespec(4,0));
if(! tid.isValid())

71

 context()->perror("Error when setting timer");

The function can also be used to test if a timer still exists before
cancelling it:

if(tid.isValid())
 timer.cancelTimer(tid);

Note, that the cancelTimer function also checks the validity of tid
and it will return a failure result (0) if you call it with a non-valid timer
id.

RTTimespec

RTTimespec is used to create time values for passing to the Timer Service. It is
designed for compatibility with POSIX.

RTTimespec is a struct with two fields: tv_sec and tv_nsec, where tv_sec is the
number of seconds, and tv_nsec is the number of nanoseconds.

long tv_sec;
long tv_nsec; tv_sec is the number of seconds for the timer setting, and tv_nsec is

the number of nanoseconds. There are 109 nanoseconds in one
second.

This will initialize an RTTimespec with one second.

RTTimespec t1(1,0);

This struct is used most often in conjunction with the Timing Service
to specify time values. For example to set a one-shot timer to expire
in 5 seconds you would use the RTTimespec constructor.

timer.informIn(RTTimespec(5,0));

RTTimespec & operator=
(const RTTimespec & t1); The RTTimespec assignment (=) operator re-initializes an existing

RTTimespec object with new second and nanosecond values.

RTTimespec & operator+=
(const RTTimespec & t1);
RTTimespec & operator-=
(const RTTimespec & t1);
RTTimespec operator+
(const RTTimespec & t1,
 const RTTimespec & t2);
RTTimespec operator-
(const RTTimespec & t1,
 const RTTimespec & t2);

Arithmetic operators.

t1, t2 are RTTimespec objects to add or subtract.

RTTimespec t1(2,0), t2;
RTTimespec::getclock(t2);
t2 += t1;

int operator==
(const RTTimespec & t1,
 const RTTimespec & t2);
int operator!=
(const RTTimespec & t1,
 const RTTimespec & t2);

Comparison operators.

Return non-zero if the objects meet the comparison condition;
otherwise 0.

72

int operator<=
(const RTTimespec & t1,
 const RTTimespec & t2);
int operator>
(const RTTimespec & t1,
 const RTTimespec & t2);
int operator>=
(const RTTimespec & t1,
 const RTTimespec & t2);
int operator<
(const RTTimespec & t1,
 const RTTimespec & t2);

t1, t2 are RTTimespec objects to compare.

RTTimespec t1(2,0), t2(3,0);
if (t1 < t2)
 //t1 is less than t2

static void getclock
(RTTimespec & tspec);

Returns the current time. The values of the tspec parameter are
filled in with the current time.

This is a class-scoped function.

RTTimespec t;
RTTimespec::getclock(t);

RTTimespec(void);
RTTimespec(
 long sec, long nsec);
RTTimespec(
 const RTTimespec & ts);
RTTimespec(
 const RTTime & t);

Constructs an RTTimespec object with seconds and nanoseconds, or
with a value of another RTTimespec object or an RTTime object.

An RTTimespec of two seconds can be created and passed to the
Timing Service informEvery() as follows:

// 2 seconds
RTTimespec t(2 , 0);
// 6am coordinated universal time (UTC)
RTTime abst(6,0,0);

timer.informEvery(t);
timer.informAt(RTTimespec(abst));

RTTiming

Timing ports are instances of the class RTTiming.

void
adjustTimeBegin(void);

void adjustTimeEnd(
const RTTimespec & delta);

Used to adjust the internal real-time system clock.

If there is a need to adjust system time, you must stop the timing
service, compute the new time, and then restart the timing service
with the new time. The RT Services Library will make adjustments
to its internal data structures so that relative timeouts are not
affected by the system clock change. Use adjustTimeBegin() to
stop the timing service and adjustTimeEnd() to restart it at the
new time.

The application must coordinate time changes through a capsule
with a timing port (meaning that it has access to the timing
service). The example below encapsulates the clock adjustment
behaviour in a capsule function. We assume that the timing port is

73

called timer and that there are operating system primitives for
reading and writing the system clock which we here call
sys_getclock() and sys_setclock(), respectively.
void AdjustTimeCapsule::setClock
 (const RTTimespec & new_time)
{
 RTTimespec old_time;
 RTTimespec delta;

 // Stop Services Library timer service
 timer.adjustTimeBegin();

 sys_getclock(old_time);
 sys_setclock(new_time);

 delta = new_time;
 delta -= old_time;

 // Resume RT Services Library timer service
 timer.adjustTimeEnd(delta);
}

int cancelTimer
(RTTimerId &tid);

Cancels a pending timer. Returns true (1) if a pending timeout
request was cancelled, and false (0) if no such request was
found.

tid is the identifier of the timer that was provided when the
service request was made.

Note that this function guarantees that no timeout message will
be received from the cancelled timer, even if the timer has already
expired, that is, was waiting to be processed, when the call was
performed.

If timer is the name of a timing port, you can create, and
subsequently cancel, a timeout request as follows:

RTTimerId tid = timer.informEvery(RTTimespec(2, 0));
timer.cancelTimer(tid);

RTTimespec currentTime
(void) const;

Determines the current absolute time.

It is recommended, for performance reasons, that you use the
RTTimespec::getclock functions instead of currentTime.

RTTimespec ctime = timer.currentTime();

RTTimerNode * informAt
(const RTTimespec & when,
 const void * data,
 const RTObject_class * type,
 int prio = General);

RTTimerNode * informAt

Starts a timer which will expire at a particular absolute point in
time.

A timer handle is returned which can be used to construct an
RTTimerId. This can be used to cancel the timer prior to expiry. A

74

(const
std::chrono::system_clock::tim
e_point & when,
 const void * data,
 const RTObject_class * type,
 int prio = General);

RTTimerNode * informAt
(const RTTimespec & when,
 int prio = General);

RTTimerNode * informAt
(const
std::chrono::system_clock::tim
e_point & when,
 int prio = General);

RTTimerNode * informAt
(const RTTimespec & when,
 const RTDataObject & data,
 int prio = General);

RTTimerNode * informAt
(const
std::chrono::system_clock::tim
e_point & when,
 const RTDataObject & data,
 int prio = General);

RTTimerNode * informAt
(const RTTimespec & when,
 const RTTypedValue & info,
 int prio = General);

RTTimerNode * informAt
(const
std::chrono::system_clock::tim
e_point & when,
 const RTTypedValue & info,
 int prio = General);

null pointer is returned if the timer request fails.

when is the desired absolute time when the timer is to expire. It
can either be specified using an RTTimespec or an
std::chrono::system_clock::time_point.

data, info, type [optional] is the message data that will be
added to the timeout message and delivered to the capsule when
the timer expires. These parameters are optional.

prio [optional] is the priority at which the timeout message will
be delivered. This parameter is optional.

RTTimespec now;
RTTimespec::getClock(&now);
timer.informAt(now + RTTimespec(15, 0));

RTTimerNode * informEvery
(const RTTimespec & delta,
 const void * data,
 const RTObject_class * type,
 int prio = General);

RTTimerNode * informEvery
(const
std::chrono::nanoseconds &
delta_ns,
 const void * data,
 const RTObject_class * type,
 int prio = General);

RTTimerNode * informEvery
(const RTTimespec & delta,
 const RTDataObject & data,
 int prio = General);

Starts a periodic timer. A timer handle which can be used to
construct an RTTimerId is returned. It can be used to cancel the
timer prior to expiry. A NULL pointer is returned if the timer
request fails.

delta represents the desired time interval (in seconds and
nanoseconds as an RTTimespec) from the current time at which a
periodic timer will expire. The timer interval should be >= 0. If the
timer interval is equal to zero, the timer will expire immediately.

delta_ns represents the desired time interval (in nanoseconds as
an std::chrono::nanoseconds).

data, info, type [optional] is the message data that will be
added to the timeout message and delivered to the capsule when

75

RTTimerNode * informEvery
(const
std::chrono::nanoseconds &
delta_ns,
 const RTDataObject & data,
 int prio = General);

RTTimerNode * informEvery
(const RTTimespec & delta,
 const RTTypedValue & info,
 int prio = General);

RTTimerNode * informEvery
(const
std::chrono::nanoseconds &
delta_ns,
 const RTTypedValue & info,
 int prio = General);

RTTimerNode * informEvery
(const RTTimespec & delta);

RTTimerNode * informEvery
(const
std::chrono::nanoseconds &
delta_ns);

the timer expires. These parameters are optional.

prio [optional] is the priority at which the timeout message will
be delivered. This parameter is optional.

if(! timer.informEvery(RTTimespec(10, 0))
 log.log("error requesting a periodic timer");

If the timer is to be cancelled, then an RTTimerId object must be
constructed for use when cancelling the timer. Ensure that if the
timer is going to be cancelled in another transition, that the timer
id is saved in a capsule attribute, and not in a transition local
variable.

if(! (tid = timer.informEvery(RTTimespec(10, 0))))
 log.log("error requesting a periodic timer");

// this could be done in an other transition
timer.cancelTimer(tid);

RTTimerNode * informIn
(const RTTimespec & delta,
 const void * data,
 const RTObject_class * type,
 int prio = General);

RTTimerNode * informIn
(const
std::chrono::nanoseconds &
delta_ns,
 const void * data,
 const RTObject_class * type,
 int prio = General);

RTTimerNode * informIn
(const RTTimespec & delta,
 int prio = General);

RTTimerNode * informIn
(const
std::chrono::nanoseconds &
delta_ns,
 int prio = General);

RTTimerNode * informIn
(const RTTimespec & delta,
 const RTDataObject & data,
 int prio = General);

RTTimerNode * informIn

Starts a timer which expires after some time has passed from the
current time (i.e. a time interval).

A timer handle which can be used to construct an RTTimerId
object is returned. It can be used to cancel the timer prior to
expiry. A NULL pointer is returned if the timer request fails.

delta represents the desired time interval (in seconds and
nanoseconds as an RTTimespec) from the current time at which
the timer will expire. Timer intervals should be >= 0. If the timer
interval is equal to zero, the timer will expire immediately.

delta_ns represents the desired time interval (in nanoseconds as
an std::chrono::nanoseconds).

data, info, type [optional] is the message data that will be
added to the timeout message and delivered to the capsule when
the timer expires. These parameters are optional.

prio [optional] is the priority at which the timeout message will
be delivered. This parameter is optional.

// request a timer to expire in 10 seconds
if(! timer.informIn(RTTimespec(10, 0)))
 log.log("error requesting a timer");

If the timer is to be cancelled, then an RTTimerId must be

76

(const
std::chrono::nanoseconds &
delta_ns,
 const RTDataObject & data,
 int prio = General);

RTTimerNode * informIn
(const RTTimespec & delta,
 const RTTypedValue & info,
 int prio = General);

RTTimerNode * informIn
(const
std::chrono::nanoseconds &
delta_ns,
 const RTTypedValue & info,
 int prio = General);

constructed for use when cancelling the timer. Ensure that if the
timer is going to be cancelled in another transition, that the timer
id is saved in a capsule attribute, and not in a transition local
variable.

if(! (tid = timer.informIn(RTTimespec(10, 0))))
 log.log("error requesting a timer");

// this could be done in an other transition
timer.cancelTimer(tid);

RTTypedValue

RTTypedValue is a struct which is used to encapsulate a data value and its type
descriptor object. For each generated class a structure named RTTypedValue_<class
name> is generated. The only time you will have to use this structure is when sending
subclass data with an event that was defined with a data class of the parent class.
For example, given class A and a subclass B, with the event ack defined with a data
class of A, you would have to use to following syntax to send B with the ack event:

B subclass;
port.ack(RTTypedValue_A(subclass,&RTType_B)).send();

If you do not explicitly specify the type descriptor for class B, the RT Services Library
will use the type descriptor for class A.

77

	C++ RT Services Library
	Introduction
	Target Configurations
	Services
	Communication Service
	Message Delivery
	Message Representation
	Avoiding to Copy Message Data
	Deferring and Recalling Messages
	Non-wired Ports

	Logging Service
	Timing Service
	Frame Service
	Working with Optional Capsule Parts
	Working with Plugin Capsule Parts
	Accessing Model Information at Run-Time

	Exception Service
	External Port Service
	Dependency Injection Service

	Structure of Generated C++ Code
	Type Descriptors
	Type Descriptor Hints
	Templates

	Threads
	Logical threads and physical threads

	Inside the C++ RT Services Library
	Run-to-Completion Semantics
	Intra-thread and Inter-thread Communication
	Message queues
	Message structure and freeList of messages
	Intra-thread message sending
	Inter-thread message sending
	Message dispatch algorithm

	Encoding and Decoding

	C++ RT Services Library Class Reference
	RTActor
	RTActorClass
	RTActorFactory
	RTActorRef
	RTActorId
	RTController
	RTExceptionSignal
	RTFrame
	RTInSignal
	RTLog
	RTMessage
	RTObject_class
	RTOutSignal
	RTProtocol
	RTSymmetricSignal
	RTTimerId
	RTTimespec
	RTTiming
	RTTypedValue

