
The RT Services Library
How to manage it using the TargetRTS wizard

Author: Madhava Dama

1

Table of Contents
1. Using the TargetRTS Wizard..5

1.1 Overview of the TargetRTS Wizard..5
1.2 Understanding the TargetRTS..5
1.3 Maintaining TargetRTS Libraries using the TargetRTS Wizard..5

1.3.1 Managing Your TargetRTS Configurations..7
1.4 Duplicating a Configuration..7
1.5 NoRTOS Target Base..12
1.6 Editing a Configuration...12
1.7 Understanding the makefiles...14
1.8 Editing the Target...15
1.9 Editing the Libset...17
1.10 Modifying a Configuration..18
1.11 Building Configurations..19
1.12 Deleting Configurations..21

2. Introducing the TargetRTS...23
2.1 Overview..23
2.2 Other Resources..25

3. Before Starting a Port...26
3.1 OS Knowledge and Experience...26
3.2 Toolchain Functionality...27
3.3 OS Capabilities..27
3.4 Simple non-RT Program on Target...28
3.5 TCP/IP Functionality..28
3.6 Floating Point Operations..29
3.7 Standard Input/Output Functionality...29
3.8 Debugging...29
3.9 Training.. 29
3.10 Support..29
3.11 What to do Before Calling Customer Support..29

4. Porting the TargetRTS..31
4.1 Overview..31
4.2 Phases of a Port..32
4.3 Choose a Configuration Name...32
4.4 Target Name..33
4.5 Libset Name... 34
4.6 Building RT Applications for Targets without Operating Systems.....................................34
4.7 Benefits of Using a NoRTOS Configuration...34
4.8 Using a NoRTOS Configuration...34
4.9 Verification... 35
4.10 Creating a Setup Script (setup.pl)..36
4.11 TargetRTS makefiles..37
4.12 Default makefile...40

2

4.13 Target makefile...42
4.14 Libset makefile...43
4.15 Config makefile..43

5. Porting the TargetRTS for C++...47
5.1 Configuring the TargetRTS...47
5.2 Platform-specific Implementation...52

5.2.1 Method RTTimespec::getclock()...53
5.2.2 Constructor RTThread::RTThread()..53
5.2.3 Class RTMutex...53
5.2.4 Class RTSyncObject...53
5.2.5 main() function..54
5.2.6 Class RTMain...55
5.2.7 Method RTDiagStream::write()...55
5.2.8 Method RTDebuggerInput::nextChar()...55
5.2.9 Class RTTcpSocket..56
5.2.10 Class RTIOMonitor...56
5.2.11 File main.cc...56

5.3 Adding New Files to the TargetRTS...56
5.3.1 The MANIFEST.cpp File...56
5.3.2 Regenerating make Dependencies..57

6. Modifying the Error Parser...58
7. Testing the TargetRTS Port..59
8. Tuning the TargetRTS..60

8.1 Disabling TargetRTS Features for Performance..60
8.2 Target Compiler Optimizations...60
8.3 Target Operating System Optimizations...61
8.4 Specific TargetRTS Performance Enhancements..61

9. Common Problems and Pitfalls..62
9.1 Overview..62
9.2 Problems and Pitfalls with Target Toolchains...62

9.2.1 Compiler Optimizations...62
9.2.2 Linker Configuration File...63
9.2.3 System Include Files...63

9.3 Problems and Pitfalls with TargetRTS/RTOS Interaction...63
9.3.1 Return Codes for POSIX Function Calls...63
9.3.2 Thread Creation..63
9.3.3 Real-time Clock..64
9.3.4 Signal Handlers..64
9.3.5 RTOS Supplies main() Function...65
9.3.6 Default Command Line Arguments...65
9.3.7 Exiting Application..66

9.4 Problems and Pitfalls with Target TCP/IP Interfaces..66
9.4.1 gethostbyname() reentrancy...66

10. TargetRTS Porting Example...67
10.1 Overview.. 67

3

10.2 Choosing the Configuration Name...67
10.3 Create Setup Script..67
10.4 Create makefiles..69

10.4.1 Libset makefile..69
10.4.2 Target makefile...70
10.4.3 Configuration makefile..71

10.5 TargetRTS Configuration Definitions..71
10.6 Code Changes to TargetRTS Classes...72
10.7 Building the New TargetRTS..74

11. Known problems / Issues..74

This document describes the TargetRTS wizard component, which is the wizard used by real-
time applications developers to manage the targets from DevOps Model RealTime for
TargetRTS.

Readers of this document are assumed to have read the document "Modeling Real-Time
Applications in Model RealTime" which covers many of the concepts which are explained in
more detail in this document.

The document was last updated for Model RealTime 10.2. All screen shots were captured on
the Windows platform.

4

1. Using the TargetRTS Wizard

This chapter is organized as follows:

 Overview of the TargetRTS Wizard
 Understanding the TargetRTS
 Maintaining TargetRTS Libraries using the TargetRTS Wizard
 Duplicating a Configuration
 NoRTOS Target Base
 Editing a Configuration
 Understanding the makefiles
 Editing the Target
 Editing the Libset
 Modifying a Configuration
 Building Configurations
 Deleting Configurations

1.1 Overview of the TargetRTS Wizard

The TargetRTS Wizard facilitates the management of the TargetRTS source tree, allows
easy customization of existing TargetRTS libraries, and simplifies porting of the TargetRTS
to new targets. With the TargetRTS Wizard, you can create a new TargetRTS configuration,
modify or duplicate an existing configuration, or delete an existing configuration that is no
longer required.

Note: Porting to a new operating system or a libset is not a trivial process, even with the
help of the TargetRTS Wizard. You must be familiar with the operating system, the tool
chain, the TargetRTS, and its layout.

Note: The figures for the TargetRTS Wizard dialogs are for the C++ language.

1.2 Understanding the TargetRTS

The TargetRTS is the set of run-time services that provide a framework in which an Mode l
Rea lTime model can run. The TargetRTS Wizard simplifies the activities of building, configuring,
managing, and customizing the TargetRTS libraries and build environment. The TargetRTS contains
the required parts, such as source code and makefiles, used to build applications from Rational Rose
RealTime models. It contains application-independent source code which is pre-compiled into target-
specific libraries. To compile this source code, the tools (such as make, compiler, linker, and archiver
utilities) must be installed and operational in your environment.

1.3 Maintaining TargetRTS Libraries using the TargetRTS
Wizard

5

To access the TargetRTS Wizard invoke the command TargetRTS->TargetRTS Wizard.
The p ic tu re be low shows the first pane in the TargetRTS Wizard.

Use this pane to locate the TargetRTS source location for the TargetRTS Wizard, then
click Next.

6

The Existing Configurations box contains a list of all your configurations. For some
configurations, you can duplicate, edit, build, or delete them.

Note: Those configurations distributed an d s up po r t e d b y Model RealTime are read-
only and cannot be edited or deleted. To modify an Model RealTime configuration that is
read-only, select the configuration and click Duplicate.

For additional information on modifying an Model RealTime configuration, see Duplicating a
Configuration.

1.3.1 Managing Your TargetRTS Configurations

When managing configurations with the TargetRTS Wizard, you can:

 Select Duplicate radio button for Duplicating a Configuration
 Select Edit radio button for Editing a Configuration
 Select Build radio button for Building Configurations
 Select Delete radio button for Deleting Configurations
 Select browse radio button option for browsing directories

You can also browse other directories for configurations to quickly view the files necessary
for each configuration. The TargetRTS Wizard opens the files in the external editor.

7

1.4 Duplicating a Configuration

Duplicating an existing configuration is the first step to creating new configurations for new
ports, or for a custom version of the same configuration.

Note: The configuration name is an important identifier of the TargetRTS. It identifies the
operating system, hardware architecture, and compiler.

To duplicate a configuration:

1 From the Existing Configuration box on the Manage Configuration pane, select
a configuration.

2 In the Manage box, click Duplicate radio button.

3 Click Next.

8

A new configuration can be:
 A simple optimization of an existing configuration
 A port of an existing configuration (to new processor architecture or to a new compiler)
 A port to an entirely new OS

Since the new configuration must have a new name, you must create a new Target, a new
Libset, or both.

The Target specifies the OS for the configuration and indicates whether it is single-
threaded or multi-threaded. Single-threaded target names end with the letter 'S' (for
example, AIX4S), while multi-threaded target names end with the letter 'T' (for example,
TORNADO2T). The Libset name indicates which processor architecture the configuration
runs on, and the compiler used to compile it (for example, ppc603-gnu-2.96). Each target
depends on one or more target bases that contain OS-specific source code. The Target
bases are in the
<installdir>/rsa_rt/C++/TargetRTS/src/target/ directory.

Note: There is a sample port in <installdir>/rsa_rt/C++/TargetRTS/src/target/sample that
you can use as a skeleton (a template) for a port to a new target.
Under the Create new label, if you select Target, you can specify a new name in the
Target name box.

9

The Target name represents the implementation-specific components of the TargetRTS.
These components are generally specific to a given configuration, of a given version, of a
given operating system. The Target name is also used to name the configuration of the
target, such as single-threaded versus multi-threaded. The target name is defined as
follows:

<target> ::= <OS_name><OS_version><RTS_config> The

components of <target> are defined as follows:

<OS_name> identifies the operating system (for example, SUN)

<OS_version> identifies the major version of that operating system.

Note: Do not use periods in the OS version because this will confuse the make
utility when it attempts to build the TargetRTS.

<RTS_config> is a single letter that identifies the configuration; "S" for a single-
threaded configuration, and "T" for a multi-threaded configuration.

For example:

SUN5T

If you select Target, the Target base area of the panel becomes enabled. The Target base
controls the OS-specific source code used for the new target. If the duplicate configuration
is a port to a different operating system, a new target base will be necessary. Duplicating
a target base copies the target base used for the original target; you will likely have to
modify the new base, as required. A skeleton target base contains only stubs for functions
that are required for any target. These functions must be fully implemented and you will
likely have to add additional functions.

You can specify a NoRTOS target base that does not use any OS-specific calls. For more
information on using a NoRTOS target base, see NoRTOS Target Base .

Note: To reuse existing targets to create new configurations, you can specify the name of
an existing target in the Target name box. The TargetRTS Wizard creates a new
configuration (using the selected libset and the existing target), and the target will not be
copied.

Under the Create new label, if you select Libset, you can specify a new name in the Libset name
box. Although the actual libset names can be chosen arbitrarily, by convention, those used by
Model RealTime are defined as follows:

<libset> ::= <processor>-<compiler_name>-<compiler_version>

The components of <libset> are defined as follows:

<processor> identifies the processor architecture name

<compiler_name> identifies the compiler product name, or the vender for the

10

compiler.

<compiler_version> identifies the compiler version. It is acceptable to use periods
in the compiler version text.

For example:

sparc-gnu-2.8.1

Note: To reuse existing libsets to create new configurations, you can specify the
name of an existing libset in the Libset name box. The TargetRTS Wizard creates
a new configuration (using the selected target and the existing libset), and the
libset will not be copied.

The Resulting Configuration box contains the name of the configuration.

Click Next.

The TargetRTS Wizard presents a Summary dialog that identifies all of the actions it
will perform.

Click Next.

When appropriate, the TargetRTS Wizard displays a Work Order dialog containing a
list of items that may require user intervention.

Click Next.

11

1.5 NoRTOS Target Base

C++ TargetRTS has a NoRTOS target base that does not use any OS-specific calls. This
means that a NoRTOS target base will work with any OS, or it will work without an OS. A
single-threaded target (NoRTOSS) uses the NoRTOS target base.

Often, when porting to a new operating system, it is useful to create the libset, then use it
with the NoRTOSS target to verify that the toolchain works properly. After the OS-
independent version of the port is complete, you can use its libset with a new target to
make the full port.

To create a configuration that uses a NoRTOS target base using the TargetRTS Wizard:

 From the Existing Configuration box on the Manage Configuration pane, select a
configuration that uses the NoRTOSS target.

 In the Manage box, click Duplicate radio button.
 Under the Create new label, select Libset.
 In the Libset name box, specify an appropriate name for the libset.

Note: For some situations where the new libset is similar to an already existing libset, it
may be useful to specify the name of that existing libset into the Libset name box. The
TargetRTS Wizard will then reuse that libset in the new configuration. The resulting
configuration can then be duplicated to properly name the new libset. The TargetRTS
Wizard will then use this libset with the new target to create the new configuration.

1.6 Editing a Configuration

After you duplicate a configuration, you can edit the new configuration. You can edit the
target, the libset, or only the configuration itself.

Note: You cannot edit the configurations that are included with Model RealTime, nor the
targets and libsets that these configurations use. You can only edit the configurations that
you duplicated previously.

Every configuration is comprised of a target and a libset. Editing the target is useful for OS-
specific changes, while editing the libset is appropriate for compiler-specific changes. To
change the TargetRTS settings, you will need to edit the target.

Note: These changes affect all configurations that use the selected target or libset.

12

The picture below shows the Edit Configuration pane in the TargetRTS Wizard. From this
pane, you can specify whether you want to edit a combination of the target, libset, or the
configuration itself. For more information on editing, see the following:

 Editing the Target
 Editing the Libset
 Modifying a Configuration

13

1.7 Understanding the makefiles

When you edit a configuration using the TargetRTS Wizard, you are modifying
properties in one or more makefiles. The makefiles that you can update when
specifying particular options while using the TargetRTS Wizard are the following:

• Main TargetRTS makefile:
$RTS_HOME/src/main.nk (Unix)
$RTS_HOME/src/main.nmk (Windows)
◦ Default makefile:

$RTS_HOME/libset/default.mk
◦ libset makefile:

$RTS_HOME/libset/<libset>/libset.mk
◦ target makefile:

$RTS_HOME/target/<target>/target.mk
◦ config makefile:

$RTS_HOME/config/<config>/config.mk

The default.mk, libset.mk, target.mk, and config.mk makefiles are used to compile both the
TargetRTS libraries and the code that is generated from the model. The target.mk,
libset.mk and config.mk makefiles override the defaults defined in
<installdir>/rsa_rt/C++/TargetRTS/libset/default.mk. These are the makefiles that you can
edit using the TargetRTS Wizard.

The main.nmk (nmake for Windows) or main.mk (make for UNIX) is the main definition for
compiling the TargetRTS libraries. These makefiles should not be customized, and will not
be discussed further in this document.

The default.mk file contains the default macro definitions that may be overridden by the
platform-specific makefiles.

The target.mk file contains the definition specific to the target operating system.

The libset.mk file contains the definition specific to the compiler.

The config.mk file contains the definition specific to the combination of the compiler,
operating system and TargetRTS configuration.

14

1.8 Editing the Target

You can edit the target to create a custom TargetRTS library. The p icture be low shows
the C++ options used to configure the run-time system.

Note: Each entry is associated with a macro that controls that particular option in the
TargetRTS source. Click Default to set all the options back to their defaults, and click
Minimal to set the options for a much smaller and faster run-time system.

After you specify your required target options, click Next.

15

The picture below shows the Target Settings panel used to control compiler and linker
flags for the target. The Set options control which variables are defined in the target.mk file
for that particular target.

Target Compiler Flags (TARGETCCFLAGS)

Adds target-specific compilation flags in the file target.mk.

Target Linker Flags (TARGETLDFLAGS)

Redefines the target linker flags in the target.mk file.

Note: These flags should be target-specific. They will affect all configurations that use this
target unless you override them on the Configuration Setting panel of the TargetRTS
Wizard.

16

1.9 Editing the Libset

You want to edit a libset to change the it to a different CPU architecture or a different
compiler, or to change how the TargetRTS library is built (for example, changing compiler
flags).

The picture below shows the options for configuring the libset. The Set options control
which variables are defined in the libset.mk file for that particular libset. The text boxes to
the right of the Set options contain their current values.

17

Libset Compiler Flags (LIBSETCCFLAGS)

Adds compiler-specific compilation flags in the file libset.mk.

Extra Compiler Flags (LIBSETCCEXTRA)

Specifies any non-essential compiler flags that control how the compiler should compile the
TargetRTS. These flags are used to compiles the TargetRTS library, but do not compile the
models. Typically, you would specify optimization flags in this box.

Libset Linker Flags (LIBSETLDFLAGS)

Adds compiler-specific linker flags in the libset.mk file.

Compiler (CC)

Specifies the name of the C++ compiler executable.

Linker (LD)
Specifies when a linker must be different from compiler (most compilers can invoke the linker),
or if a preprocessing script is necessary.

Library Builder (AR_CMD)

Specifies a command to run the library utility.

1.10Modifying a Configuration

Editing a configuration overrides settings from the target.mk and libset.mk files. The
overridden settings apply only to the selected configuration, and they are stored in that
configuration’s config.mk file.

The picture below shows the override options for the configuration. These are the same
options that appear on the Libset Settings and the Target Settings panels in the
TargetRTS Wizard.

18

1.11 Building Configurations

To build an existing configuration of the TargetRTS, you must specify the make command
used by the build. The picture below shows the Build Configuration pane which you can
use to compile the TargetRTS libraries.

Building a selected configuration creates a directory with the following format:

<installdir>/rsa_rt/C++/TargetRTS/build-<target>-<libset>

This directory contains the dependency file and object files for the TargetRTS. When the
build completes successfully, the resulting Model RealTime libraries save to a directory that
uses the following format:

<installdir>/rsa_rt/C++/TargetRTS/lib/<target>.<libset>

19

make

Specifies a UNIX implementation of a make utility (make).

gmake

Specifies the GNU implementation of make.

nmake

Specifies a Microsoft implementation of a make utility (nmake).

ClearCase clearmake

Specifies the UNIX implementation of a make utility for building software whose file are
under ClearCase version control.

20

ClearCase omake

Specifies the Windows implementation of a make utility for building software whose files
are under ClearCase version control.

other

Specify an alternate make utility to build the TargetRTS.

Rebuild (make clean first)

Ensures a clean build. When selected, all intermediate files are deleted first.

Build flat

Copies all source files into a single directory (one file per class) and builds the libraries from
that location. This option is useful for debugging because some debuggers do not work
properly with the TargetRTS source directory structure.

Note: Setting this option also decreases the build time considerably because fewer
source files need to be opened and closed.

1.12Deleting Configurations

For any duplicated configuration that you create, you can also delete those configurations.

Note: The configurations distributed with Model RealTime are read-only and cannot be
deleted.

The picture below shows the Delete Configuration panel from which you can selectively
delete the target, target base, libset, or the configuration-specific files for the selected
configuration.

21

22

2. Introducing the TargetRTS
This chapter is organized as follows:
 Overview
 Other Resources

2.1 Overview

The TargetRTS is the set of run-time services that provide a framework in which an Model
RealTime model can run. It provides the run-time implementation of the UML-RT constructs
used in the model. The p icture below shows the context of the TargetRTS in building an
executable program.

This guide describes the steps required to port the TargetRTS to a new target environment.
The new target may simply be a new version of an operating system or compiler on a UNIX
host. In more complicated cases it may be a new operating system, compiler and target
hardware. The latter scenario is of more interest to this guide, although all the information
required for the former scenario is provided.

This guide is specifically designed for software development professionals familiar with the

23

target environment they intend to port to. It is assumed that the reader has significant
knowledge and experience with the development environment, operating system, and
target hardware.

24

2.2 Other Resources

Before starting a port, ensure that you have the following documents and material available:

Operating system documentation (for system calls, available services)
Compiler documentation
Sample programs that come with compiler or operating system (use these to test your toolchain)
The document “Building C++ Applications with Model RealTime”
Model RealTime example models (to test the port)

25

3. Before Starting a Port

This chapter is organized as follows:

 OS Knowledge and Experience
 Toolchain Functionality
 OS Capabilities
 Simple non-Model RealTime Program on Target
 TCP/IP Functionality
 Floating Point Operations
 Standard Input/Output Functionality
 Debugging
 Training
 Support
 What to do Before Calling Customer Support

3.1 OS Knowledge and Experience

Knowledge and experience with the target operating system is key to a successful port.
This knowledge should extend to the development environment and target hardware. The
type of knowledge required includes such details as synchronization mechanisms, thread
creation, memory management, timing, device drivers, board support packages, memory
maps, TCP/IP support, priority and scheduling schemes, and so forth. See OS Capabilities
for a list of OS capabilities required by the TargetRTS.

Experience with porting the TargetRTS to other platforms will aid greatly as the ports tend
to follow a pattern. For each development environment and operating system there are
bound to be a few surprises. See Common Problems and Pitfalls.

26

3.2 Toolchain Functionality

A functioning development environment must be in place before porting can begin.
This includes the correct installation of tools such as linkers, compilers, assemblers
and debuggers. To build the TargetRTS, you must have a working version of Perl for
your development host (version 5.002 or greater). Perl is used extensively in the
makefiles for the TargetRTS.

It is also important to initialize environment variables for inclusion of header files and
location of library files. An easy way to test this is to create a simple program, such as
“Hello World”, and compile and run it on the target. This step is described in Simple
non-RT Program on Target.

3.3 OS Capabilities

The target operating system must have a set of services that satisfy the requirements
of the TargetRTS. In general, most commercial real-time operating systems (RTOS)
have these services. Before starting a port, check for these basic capabilities in the
target RTOS. The table below lists the TargetRTS features and their corresponding
RTOS services:

C++ TargetRTS Feature Operating System Service

RTTimespec::getclock()

(method required)

A function is required to return the current time. The more
precision the better. In general, an RTOS will return time with
precision of its internal timer.

RTThread::RTThread()

(constructor required for threaded
targets)

Task creation function - must be able to create task or thread
with specified stack size and priority. Be aware of priority
scheme - some RTOSes use 0 as highest priority while others
may use 0 for lowest priority.

RTMutex (all 4 methods required for
threaded targets)

A mutual exclusion mechanism. Some RTOSes provide
optimized mutex service along with semaphores.

RTSyncObject (all 5 methods
required for threaded targets)

Semaphore, mailbox, signal - service must provide infinite
and timed blocking.

RTDiagStream::write()

(output to console)

Standard output - this may not be provided out-of-the-box.
For embedded targets, device drivers added to the board
support package may be required. Output is generally routed
to external serial ports but TCP/IP or UDP/IP may be used
instead.

RTDebuggerInput::nex tChar()

(input from console)

Standard input, as above. This can be removed from the
TargetRTS via configuration options.

27

Target Observability TCP/IP support is required. This includes device drivers in the
board support package for the ethernet hardware on the target.
If not provided this is a substantial do-it-yourself project. Target
Observability can be removed from the TargetRTS via
configuration options.

new, delete The RTOS must support some sort of memory management. In
general, this is hidden from the user by the compiler as the
RTOS resolves the new and delete symbols.

main() function Some RTOSes have their own main function defined. If so,
then the main function in the TargetRTS must be redefined.

3.4 Simple non-RT Program on Target

An easy way to test the toolchain functionality is to create a simple program that prints
out “Hello World” on the console.

This program should not use any TargetRTS code or libraries. Compile and link the
program outside of Model RealTime using your toolchain, and download the executable
to the target. If it executes successfully, then your development environment is ready.

Further testing is strongly recommended. This would include some basic RTOS
services such as thread creation in your test program. Again, no TargetRTS code or
libraries should be used. Many RTOSes provide example programs to compile and run.
Try these out and verify the functionality of your setup. If you are using a source-level
debugger, verify that you can step through the source code and examine variables. If
the debugger is aware of operating system data structures, check if you can examine
these. The purpose of this testing to ensure that all of the required operating system
features are operational and understood before attempting the port of the TargetRTS.

C++ Another important test for C++ compilers is to include a static constructor in
the test program. This will ensure that proper initialization is performed.

3.5 TCP/IP Functionality

To support Target Observability for the new port, the target operating system must
provide a compatible TCP/IP stack. In general, the TCP/IP layer must support the
BSD sockets interface, that is, the creation and deletion of sockets, functions such as
socket(), connect(), bind(), listen(), select(), and so forth. Typically, RTOSes try to
provide a BSD-compliant TCP/IP stack. TCP/IP functionality can be a common source
of problems with new ports. See Common Problems and Pitfalls.

If a TCP/IP stack is not provided, then you must implement one, which might require
significant effort. Alternatively, the use of SLIP or PPP over a serial connection may be
an option, but would require customizations. It would also affect the performance of

28

Target Observability. Alternatively, you can choose not to use target observability.

3.6 Floating Point Operations

Some of the TargetRTS classes require the use of floating point operations.
Investigate the support for floating point on your target system.

C++ It is possible to configure the support for RTReal from the TargetRTS via
configuration options.

3.7 Standard Input/Output Functionality

The TargetRTS needs standard input and output to a console for log messages, panic
messages, and debugger input/output. This may already be provided by the target
development or operating system. Some embedded RTOS and development tools may
not provide standard input and output, and instead require the addition of serial port
device drivers to the board support package. The use of TCP/IP or UDP/IP to
provided standard input/output is also an option.

3.8 Debugging

The use of a source-level debugger that provides some sort of operating system
awareness is the best development tool for the port. This is the easiest way to examine
source code, memory, variables, registers, stacks, and so forth.

3.9 Training

Training is an important component of a successful port. HCL offers training courses to
help users understand, use, and port the TargetRTS. Your RTOS vendor may also offer
training and this is recommended as well.

3.10Support

HCL provides support for the standard ports as identified in the Installation Guide. All
reported issues will be duplicated on one or more of the standard referenced
configurations.

3.11 What to do Before Calling Customer Support

The following steps should be followed before calling Technical Support for help with a
custom port of the TargetRTS.

29

 Get to know your compiler/linker/debugger toolchain. Be sure it is installed correctly,
and that programs can be compiled, linked, downloaded to the target hardware and run
successfully.
 Get to know your target operating system. Be sure that an example multi-threaded
program that exercises the various features of the RTOS is compiled, linked and
downloaded to the target hardware and runs successfully. Do not use Model RealTime
for this example program. This should be produced independently to verify toolchain and
RTOS functionality.
 Read this guide and the C Reference or C++ Reference that is included with Model
RealTime, to understand the required capabilities of the RTOS needed to support the
TargetRTS.
 Ensure that the TCP/IP stack for your target platform is operational. In particular the
sockets interface must be working, and additional utilities such as gethostbyname() must
be functional.

 Test the functionality of the standard input and output for your target. This will
probably be verified in earlier steps.

 Learn how to use the target debugger. This will be a useful tool when doing the port.

 Get as much training on Model RealTime, the RTOS, and your toolchain as possible.

30

4. Porting the TargetRTS
This chapter is organized as follows:

 Overview
 Phases of a Port
 Choose a Configuration Name
 Building Model RealTime Applications for Targets without Operating Systems
 Creating a Setup Script (setup.pl)
 TargetRTS makefiles
 Default makefile
 Target makefile
 Libset makefile
 Config makefile

4.1 Overview

The most common customization to the TargetRTS is porting it to a new platform. A
platform is defined by the TargetRTS as the combination of the operating system, target
hardware and the compiler/linker toolchain. A new operating system requires the most
work since it often requires implementation changes. However, a new compiler may also
require changes, in particular, to the configuration files.

The ports that are shipped with the TargetRTS source are a good place to begin
considering design alternatives for a new port. The root directory for the TargetRTS source
will be referred to from this point forward using the environment variable $RTS_HOME.

31

C++ For C++, it is usually defined as <installdir>/rsa_rt/C++/TargetRTS/C++/TargetRTS.

In the sections that follow, examples are extracted from this source.

4.2 Phases of a Port

The major steps for implementing the port are as follows:

 Performing pre-port steps (see Before Starting a Port).
 Naming the platform (see Choose a Configuration Name).
 Defining the setup script (see Creating a Setup Script (setup.pl)).
 Defining the platform-specific makefiles (see TargetRTS makefiles).
 Defining the platform-specific header files (see Porting the TargetRTS for C++).
 Defining the platform-specific implementation of TargetRTS features (see Platform-
specific Implementation).
 Building the new TargetRTS and fixing compile and link problems (see Building the
New TargetRTS).
 Testing the new TargetRTS using test model updates (see Testing the TargetRTS
Por t).
 Tuning the performance of the TargetRTS, if required (see Tuning the TargetRTS).

4.3 Choose a Configuration Name

The first step in implementing a port is picking the name for the configuration. This name
and parts of it are used by the various loadbuild tools to find the files needed to build the
TargetRTS for that configuration. It is also used during compilation of the Model RealTime
models. There are two parts to the name: <target> and <libset>. The resulting names for
TargetRTS configurations are defined as the concatenation of the target and libset names
in the following pattern:

<config> ::= <target>.<libset>

32

Some examples are given below.

Config Name Description

SUN4S.sparc-gnu-2.8.1 SunOS 4.x Single-threaded on a Sparc
processor using Free Software Foundation gnu
version 2.8.1

SUN5T.sparc-gnu-2.8.1 Solaris 2.x Multi-threaded on a Sparc processor
using Free Software Foundation gnu version
2.8.1

SUN5S.sparc-SunC++-4.2 Solaris 2.x Single-threaded on a Sparc
processor using Sun Microsystems
SPARCUtils C++ version 4.2

NT40T.x86-VisualC++-6.0 Windows NT 4.0 Multi-threaded on an x86
processor using Microsoft Visual C++ version
6.0

TORNADO2T.ppc-cygnus-2.7.2-960126 Tornado 2 Multi-threaded on a Motorola
PowerPC processor using Cygnus C++ version
2.7.2-960126

4.4 Target Name
The target name presents the implementation-specific components of the TargetRTS.
These components are generally specific to a given configuration, of a given version, of a
given operating system. The target name is also used to name the configuration of the
target, for example, single versus multi-threaded. The target name is defined as follows:

<target> ::= <OS name><OS version><RTS config>

For example: SUN5T. The components of <target> are defined as follows:

<OS name> identifies the operating system (for example, SUN)

<OS version> identifies the major version of that operating system (for example, 5
meaning SunOS 5.x, that is, Solaris 2.x). Do not use periods in the OS version, as this will
confuse the make utility when trying to build the TargetRTS.

<RTS config> is a single letter to further identify the configuration. Currently only ‘S’
for single-threaded and T’ for multi-threaded configurations are supported.

33

4.5 Libset Name
Although the actual libset names can be chosen arbitrarily, by convention those used by
Model RealTime are defined as follows:

<libset> ::= <processor>-<compiler name>-<compiler version>

For example: sparc-gnu-2.8.1. The components of <libset> are defined as follows:

<processor> identifies the processor architecture name

<compiler name> identifies the compiler product name or the vendor for the
compiler

<compiler version> identifies the compiler version. It is acceptable to use periods in the
compiler version text.

4.6 Building RT Applications for Targets without Operating
Systems

You can configure the Model RealTime run-time libraries to build Model RealTime
applications that run without an operating system. The resulting application that is
generated will be a “main” program; you can build and run a main program on the target.

If there is no RTOS available on the target, or if the application will exist in a single
thread, you can use a NoRTOS configuration.

4.7 Benefits of Using a NoRTOS Configuration
The benefits to using a NoRTOS configuration are:

 A NoRTOS configuration does not require any RTOS services.
 A NoRTOS configuration is useful in small footprint and simple device
configurations, or in configurations where threading is not required.
 You can get started quickly by minimizing the effort required to make the initial port
operational.

4.8 Using a NoRTOS Configuration
If you are creating a new target configuration, you can begin by creating a NoRTOS
configuration, and later change it to a threaded configuration.

A NoRTOS does not have any RTOS dependencies; however, this does not prevent you
from using RTOS services in your application.

34

To configure a NoRTOS configuration using the TargetRTS Wizard:

 From the Tools menu, click TargetRTS Wizard.
 Select a language and click Next.
 In the Manage Configurations pane, select a NoRTOS configuration, such as
NoRTOSS.x86-VisualC++-6.0 NoRTOSS.sparc-gnu-2.8.1.
 Click Duplicate to modify the NoRTOS configuration for you requirements.
 In the Duplicate Configuration pane, select Libset.
 In the Libset name box, specify a new Libset, or if you want to reuse an existing libset,
type the name of that libset. For additional information on creating a Libset name, see
L i b s et N a me .
 Click Next.
 In the Summary pane, review the information, and then click Next.
 In the Work Order pane, review the information, and then click Next.

The resulting run-time libraries for this port have no dependencies on any operating
services. They do expect console I/O if there is no stdin/stdout for your target that can
easily be compiled. Linking your Model RealTime model with the NoRTOS library creates
a program with a "main" entry function.

Although the resulting services library has no operating system dependencies, it does
depend on the compiler used to build the program for a specific CPU. To complete a port,
you will need to add the supporting compiler interfaces.

4.9 Verification
You should verify that you can:

 build and link against a services library
 compile and link for your target inside the toolset
 create an executable for your target.

35

Other things you may want to test are:
 error parsing (for example, you can add a syntax error, double-click on the resulting
error in the Build Errors tab, then observe the error in the model to see if it is the correct
error)
 timing services (for example, add a timing port and test the timing services).
 if you have interfaces to load, unload, reset your target from your host, you may
want to create Perl script wrappers to make those capabilities accessible within Model
RealTime. See <installdir>/rsa_rt/C++/TargetRTS/bin/tc/win32 for examples of these
scripts.

4.10Creating a Setup Script (setup.pl)

The setup script is a file, setup.pl, containing Perl commands that configure the
environment for the compilation of the TargetRTS for the specified platform. This file is
located in the directory $RTS_HOME/config/<config>.

Note: If the target toolchain environment variables are included in a user ’s standard
environment, the variables in the setup.pl file may not be required. These environment
variables defined in the setup.pl file are not available when using the toolset to build user
models.

Commands in the setup.pl file are executed before any of the TargetRTS compilation tools
are invoked. Typically, definitions for locations of files on the host platform are included in
this file (such as setting the shell environment variable PATH to point to the appropriate
tools).

Note: Ensure correct tool chain paths are used in setup.pl, if required change them to
appropriate paths/registry variables.

36

The table below describes the variables in the setup.pl file that are specific to Model
RealTime:

Variables Description

$preprocessor Defines the C++ preprocessor command appropriate for
the compilation environment, and automatically generates
source code dependencies for the TargetRTS.

$supported Defines whether Model RealTime supports this target. Valid
values for $supported are Yes, No, and Custom. For a custom
port, we recommend Custom. This variable has no impact on
how the port is compiled or used.

$target_base Indicates that the implementation of the target-specific features
of the TargetRTS are rooted in the same source directory as
the $target_base target. For example, for the TORNADO2
targets, the $target_base is set to TORNADO1. As a result,
TORNADO2 implementations of TargetRTS classes are in the
same source directory as those of the TORNADO1 target, that
is, $RTS_HOME/src/target/TORNADO1.

This variable can contain multiple entries separated by a
comma. When using multiple entries, the target source
directories are searched in the specified order.

$postprocessor An optional variable that runs after $preprocessor.

Note: The $preprocessor and $supported variables must be defined for all targets. As an

example look at one of the setup.pl files located in the directory:

$RTS_HOME/config/<target>

Note: The setup file is not used when compiling the generated source, neither from within
the toolset, nor from the command-line. The environment variables defined in the setup
file must instead be defined in the user’s environment before starting the Model RealTime
toolset. The setup file assumes that the user’s environment has the variable OS_HOME
already defined as a partial path to where the RTOS is installed.

4.11 TargetRTS makefiles

Two types of builds are supported by the makefiles for the TargetRTS: compilation of the
TargetRTS libraries and compilation of the generated code. The platform-specific
definitions are required by both and are thus placed in separate files. The sequencing of
the makefiles for the two paths are shown in the picture below.

37

As shown, there is a makefile for each of the following:

 $RTS_HOME/src/Makefile is the root makefile for TargetRTS compilation. It
invokes a Perl script called Build.pl. This script checks the dependencies for the
TargetRTS source code and generates a makefile called depend.mk in the
$RTS_HOME/build-<config> directory. It then builds the TargetRTS from this directory.
This makefile and Build.pl should not be customized, and will not be discussed further in
this document.
 $RTS_HOME/src/main.nmk (main.mk for UNIX) is the main definition for compiling

38

the TargetRTS libraries. These makefiles should not be customized, and will not be
discussed further in this document.

 The generated makefile for the model being compiled. See the C++ Reference for
more details on how this makefile is generated.
 $RTS_HOME/codegen/ms_nmake.mk (gnu_make.mk for Gnu, unix_make.mk for
other Unix) is the main definition for compiling a model. These makefiles should not be
customized, and will not be discussed further in this document.
 $RTS_HOME/libset/default.mk, the default macro definitions that may be
overridden by the platform specific makefiles. See Default makefile.
 $RTS_HOME/target/<target>/target.mk is the definition specific to the target
operating system. See Target makefile.
 $RTS_HOME/libset/<libset>/libset.mk is the definition specific to the compiler. See
Libset makefile.
 $RTS_HOME/config/<config>/config.mk is the definition specific to the combination
of the compiler, operating system and TargetRTS configuration. See Config makefile.
 The default.mk, libset.mk, target.mk, and config.mk makefiles are used to compile
both the TargetRTS libraries and the model.

Compilation of the TargetRTS is performed from the $RTS_HOME/src directory by
issuing the command

make CONFIG=<target>.<libset>

For example in UNIX:

make CONFIG=SUN5T.sparc-gnu-2.8.1

For example in Windows:

nmake CONFIG=NT40T.x86-VisualC++-6.0

Note: Some make utilities also allows the following:

make CONFIG=<target>.<libset>

For example:

make SUN5T.sparc-gnu-2.8.1

39

4.12Default makefile

The target.mk, libset.mk and config.mk makefiles are expected to override defaults
defined in $RTS_HOME/libset/default.mk. The defaults are as follows for each
language.

For the C++ language:

C++ # ======== General Defaults ===================================

CONFIG = $(TARGET).$(LIBRARY_SET)
Defaults for macros which may be modified by
libset/$(LIBRARY_SET)/libset.mk
target/$(TARGET)/target.mk
or config/$(CONFIG)/config.mk

PERL = rtperl
FEEDBACK = $(PERL) "$(RTS_HOME)/tools/feedback.pl" MERGE = $(PERL)
"$(RTS_HOME)/tools/merge.pl"
NOP = $(PERL) "$(RTS_HOME)/tools/nop.pl" RM = $(PERL) "$
(RTS_HOME)/tools/rm.pl" RMF = $(RM) -f
TOUCH = $(PERL) "$(RTS_HOME)/tools/touch.pl"

codegen makefiles stuff

RTGEN = rtcppgen
RTCOMP = $(PERL) "$(RTS_HOME)/codegen/rtcomp.pl" RTLINK =
$(PERL) "$(RTS_HOME)/codegen/rtlink.pl" VENDOR = generic

Macros used when make must recurse

MAKEFILE = Makefile

Macros used when creating an object file from a C++ source file

CC = $(FEEDBACK) -fail \
CC should be defined by libset.mk or generated
makefile
DEBUG_TAG = -g DEPEND_TAG = -I DEFINE_TAG = -D INCLUDE_TAG = -
I LIBSETCCEXTRA = LIBSETCCFLAGS = OBJECT_OPT = -c OBJOUT_OPT = -
o OBJOUT_TAG = SHLIBCCFLAGS = -PIC TARGETCCFLAGS =

40

Macros used when creating an object library from a set of object files

AR_CMD = $(PERL) "$(RTS_HOME)/tools/ar.pl" AR = $(AR_CMD)
LIBOUT_OPT = LIBOUT_TAG =
RANLIB = $(NOP)

Macros used when creating a shared library from a set of object files

SHLIB_CMD = $(FEEDBACK) -fail Shared libraries not supported.
SHLIBOUT_OPT = -o
SHLIBOUT_TAG =

Macros used when creating an executable from a set of object files,
libraries

LD = $(CC) DIR_TAG = -L LIBSETLDFLAGS = LIB_TAG = -l OT_LIB_TAG
= -l TARGETLDFLAGS = TARGETLIBS = EXEOUT_OPT = -o

EXEOUT_TAG =

Macros used to construct names of various kinds of files

EXEC_EXT = LIB_PFX = lib LIB_EXT = .a CPP_EXT = .cc
OBJ_EXT = .o SHLIB_PFX = lib SHLIB_EXT = .so

========= Shared Macros ==============================

RTSYSTEM_INCPATHS = \
$(INCLUDE_TAG)"$(RTS_HOME)/libset/$(LIBRARY_SET)" \
$(INCLUDE_TAG)"$(RTS_HOME)/target/$(TARGET)" \
$(INCLUDE_TAG)"$(RTS_HOME)/include" RTS_LIBRARY = $(RTS_HOME)/lib/$
(CONFIG)

41

SYSTEM_LIBS = $(DIR_TAG)"$(RTS_LIBRARY)" \
$(OT_LIB_TAG)ObjecTime \
$(OT_LIB_TAG)ObjecTimeTypes

========= Linking ====================================== LD_OUT = $@
LD_HEAD = \
$(EXEOUT_OPT) $(EXEOUT_TAG)$(LD_OUT) \
$(LIBSETLDFLAGS) \ "$(RTS_LIBRARY)/main$(OBJ_EXT)"
ALL_OBJS_LIST = $(ALL_OBJS) LD_TAIL = \
$(SYSTEM_LIBS) \
$(TARGETLDFLAGS) \
$(TARGETLIBS)

======== Compiling ====================================

CC_HEAD = \
$(OBJECT_OPT) $(OBJOUT_OPT) $(OBJOUT_TAG)$@ \
$(LIBSETCCFLAGS) \
$(TARGETCCFLAGS) \
$(RTSYSTEM_INCPATHS) CC_TAIL =
===

4.13Target makefile

The $RTS_HOME/target/<target>/target.mk makefile provides definitions specific to the
operating system. The definitions in this makefile override the defaults in
$RTS_HOME/libset/default.mk.

An example target makefile file, $RTS_HOME/target/SUN5T/target.mk, contains the
following:
TARGETCCFLAGS = $(DEFINE_TAG)_REENTRANT
TARGETLDFLAGS = $(LIB_TAG)nsl $(LIB_TAG)socket –R $(RTS_LIBRARY)
TARGETLIBS = $(LIB_TAG)posix4 $(LIB_TAG)thread

42

4.14Libset makefile

The $RTS_HOME/libset/<libset>/libset.mk makefile provides definitions specific to the
compiler. The definitions in this makefile override the defaults in
$RTS_HOME/libset/default.mk. An example libset makefile file, $RTS_HOME/libset/sparc-
gnu-2.8.1/libset.mk, contains the following:

For the C++ language:

C++ VENDOR = gnu
CC = g++
LIBSETCCFLAGS = -V2.8.1 -fno-exceptions -fno-rtti
LIBSETCCEXTRA = -O4 -finline -finline-functions -fno-builtin \ -Wall -Winline -Wwrite-strings
SHLIBS =
LIBSETLDFLAGS = -V2.8.1

4.15Config makefile

The $RTS_HOME/config/<config>/config.mk makefile provides definitions specific to the
combination of the compiler, operating system and TargetRTS configuration. This makefile
is empty for most target/libset combinations. Usually this file will only be needed to work
around issues that may not appear in either the target or libset alone.

Note: Definitions in this file override the definitions in the target.mk and libset.mk files.

43

The tab le be low defines which make macros can be redefined and where they are set.

Table 1 Make Macro Definitions

Macro Name Defined where Note

TARGET Defined in ms_nmake.mk,
gnu_make.mk and unix_make.mk.

Redefinition not recommended.

CONFIG Defined in default.mk. Redefinition not recommended.

PERL Default defined in default.mk as
"rtperl"

Some compilation hosts may require an
explicit path; if necessary, redefine in
libset.mk or config.mk.

FEEDBACK Defined in default.mk. Redefinition not recommended.

MERGE Defined in default.mk. Redefinition not recommended.

NOP Default defined in default.mk. Redefinition from Perl script to (faster) OS-
dependent command is possible.

RM Default defined in default.mk. Redefinition from Perl script to (faster) OS-
dependent command is possible.

RMF Default defined in default.mk. Redefinition from Perl script to (faster) OS-
dependent command is possible.

TOUCH Default defined in default.mk. Redefinition from Perl script to (faster) OS-
dependent command is possible.

RTGEN Defined in default.mk. Redefinition not recommended.

RTCOMP Defined in default.mk. Redefinition not recommended.

RTLINK Defined in default.mk. Redefinition not recommended.

VENDOR Default defined in default.mk as
“generic” and intended to be
overridden in libset.mk.

During porting, this may be left as “generic”.
However, you should provide an error-parser
script eventually. Since error formats are
typically vendor-specific (independent of the
version of the compiler or of the compilation
host-type), scripts are identified by the
vendor ’s name in libset.mk.

MAKEFILE Defined in default.mk. Redefinition not recommended.

CC Default defined in default.mk to
cause compile-time error; must
be redefined in libset.mk.

Must be redefined in libset.mk
before porting.

44

DEBUG_TAG Default defined in default.mk. Redefine in libset.mk if necessary
for a compiler.

DEPEND_TAG Default defined in default.mk. Redefine in libset.mk if necessary
for a compiler.

DEFINE_TAG Default defined in default.mk. Redefine in libset.mk if necessary
for a compiler.

INCLUDE_TAG Default defined in default.mk. Redefine in libset.mk if necessary
for a compiler.

LIBSETCCEXTRA Default defined in default.mk. Add compiler-specific compilation flags in
libset.mk, if necessary.

LIBSETCCFLAGS Default defined in default.mk. Add compiler-specific compilation flags in
libset.mk, if necessary.

OBJECT_OPT Default defined in default.mk. Redefine in libset.mk if necessary
for a compiler.

OBJOUT_OPT Default defined in default.mk. Redefine in libset.mk if necessary
for a compiler.

OBJOUT_TAG Default defined in default.mk. Redefine in libset.mk if necessary
for a compiler.

TARGETCCFLAGS Default defined in default.mk. Add target-specific compilation flags in
target.mk, if necessary.

AR_CMD Default defined in default.mk. Redefine in libset.mk if necessary
for a linker.

LIBOUT_OPT Default defined in default.mk. Redefine in libset.mk if necessary
for a linker.

LIBOUT_TAG Default defined in default.mk. Redefine in libset.mk if necessary
for a linker.

RANLIB Default defined in default.mk. Redefine in libset.mk or target.mk if
necessary for a linker.

LD Default defined in default.mk. Redefine in libset.mk if linker must be
different from compiler (most compilers
can invoke the linker anyhow), or if a
preprocessing script is necessary.

DIR_TAG Default defined in default.mk. Redefine in libset.mk if necessary
for a linker.

LIBSETLDFLAGS Default defined in default.mk. Redefine in libset.mk if necessary
for a linker.

LIB_TAG Default defined in default.mk. Redefine in libset.mk if necessary
for a linker.

OT_LIB_TAG Default defined in default.mk. Redefine in libset.mk if necessary
for a linker.

TARGETLDFLAGS Default defined in default.mk. Redefine in config.mk or target.mk if
necessary for a linker.

45

TARGETLIBS Default defined in default.mk. Redefine in config.mk or target.mk if
necessary for a linker.

EXEOUT_OPT Default defined in default.mk. Redefine in libset.mk or config.mk if
necessary for a linker.

EXEOUT_TAG Default defined in default.mk. Redefine in libset.mk if necessary
for a linker.

EXEC_EXT Default defined in default.mk. Redefine in config.mk, libset.mk or
target.mk if necessary for a linker.

LIB_PFX Default defined in default.mk. Redefine in config.mk or libset.mk if
necessary for a linker.

LIB_EXT Default defined in default.mk. Redefine in libset.mk if necessary
for a linker.

OBJ_EXT Default defined in default.mk. Redefine in libset.mk if necessary for a
compiler/linker.

RTSYSTEM_INCPA
THS

Defined in default.mk. Redefinition not recommended.

RTS_LIBRARY Defined in default.mk. Redefinition not recommended.

SYSTEM_LIBS Defined in default.mk. Redefinition not recommended.

LD_OUT Defined in default.mk. Redefinition not recommended.

LD_HEAD Default defined in default.mk. Redefine in config.mk, libset.mk or
target.mk if necessary for a linker.

ALL_OBJS_LIST Default defined in default.mk. as
the concatenation of all object files
in the update.

Redefine in libset.mk to “%$
(ALL_OBJS_LISTFILE)” to pass list of
object files to linker (or linker script), if line
length limitations forbid passing list via
shell.

LD_TAIL Default defined in default.mk. Redefine in config.mk, libset.mk or
target.mk if necessary for a linker.

CC_HEAD Default defined in default.mk. Redefine in config.mk, libset.mk or
target.mk if necessary for a compiler.

CC_TAIL Default defined in default.mk. Redefine in config.mk, libset.mk or
target.mk if necessary for a compiler.

46

5. Porting the TargetRTS for C++
This chapter is organized as follows:

 Configuring the TargetRTS
 Platform-specific Implementation
 Adding New Files to the TargetRTS

5.1 Configuring the TargetRTS

Much of the configurability of the TargetRTS is done at the source code file level: target-
specific source files override common source files. This is illustrated in the next section on
platform-specific implementations. However, configurability is also available within a
source file using preprocessor definitions. The configuration is set in two C++ header files:

• $RTS_HOME/target/<target>/RTTarget.h for specifying the operating system specific
definitions.

• $RTS_HOME/libset/<libset>/RTLibSet.h for specifying the compiler specific
definitions; this file does not exist by default.

Definitions made in these files override their default definitions in
$RTS_HOME/include/RTConfig.h. The symbols and their default values are listed in the
table below.

Note: In the table, in general, defining a symbol with the value 1 enables (= sets) the
feature the symbol represents and defining it with the value 0 disables (= clears) the
feature.

Symbol Default Value Possible Values Description

USE_THREADS none, must be
defined in the
platform headers
(usually
RTTarget.h)

0 or 1 Determines whether the
single-threaded or
multi-threaded version of the
TargetRTS is used. If
USE_THREADS is 0, the
TargetRTS is single-threaded.
If USE_THREADS is 1, the
TargetRTS is multi-threaded.

47

DEFER_IN_ACTOR 0 0 or 1 If 1, there will be one defer
queue in each capsule. If 0,
there will only be one defer
queue per controller. This is a
size/speed trade-off. Separate
queues for each capsule uses
more memory but results in
better performance.

HAVE_INET 1 0 or 1 Set to 1 if TCP/IP is
supported.

INTEGER_POSTFIX 1 0 or 1 Sets whether the compiler
understands the post
increment operator on
classes. i.e.

Class x; x++;

LOG_MESSAGE 1 0 or 1 Sets whether the debugger
can log the contents of
messages.

OBJECT_DECODE 1 0 or 1 Enables the conversion of
strings to objects, needed for
Target Observability.

OBJECT_ENCODE 1 0 or 1 Enables the conversion of
objects to strings. Needed for
Target Observability.

OTRTSDEBUG DEBUG_VERBOSE DEBUG_VERBOSE Enables the TargetRTS
debugger. It will make it
possible to log all important
internal events such as the
delivery of messages, the
creation and destruction of
capsules, and so on. This is
necessary for the target
observability feature.

DEBUG_TERSE Reduces the size of the
resulting executable at the
expense of limiting the
amount of debug
information.

DEBUG_NONE Further reduces the
executable size, while
increasing performance.
However, the RTS debugger
will not be available.

48

PURIFY 0 0 or 1 If 1, this flag indicates that the
Purify tool is being used. This
tells the TargetRTS to disable
all object caching, which
degrades performance but
allows Purify to monitor
RTMessage objects.

RTS_COMPATIBLE 520 520, 600 or 620 If 520, obsolete features from
ObjecTime Developer 5.2 of
the TargetRTS will be
present. If 600, obsolete
features from version 6.0 of
the TargetRTS will be
present. Set to 620 to disable
backwards compatibility.

RTS_COUNT 0 0 or 1 If this flag is 1, the TargetRTS
will keep track of the number of
messages sent, the number of
capsules incarnated, and
other statistics. Naturally,
keeping track of statistics adds
overhead.

RTS_INLINES 1 0 or 1 Controls whether TargetRTS
header files define any inline
functions.

RTFRAME_
THREAD_SAFE

1 0 or 1 Setting this macro to 1
guarantees that the frame
service is thread safe. This is
an option because some
applications may use the
frame service in ways that
don't require this level of
safety.

RTFRAME_
CHECKING

RTFRAME_
CHECK_STRICT

RTFRAME_
CHECK_STRICT

The frame service is intended
to provide operations on
components of the capsules
which have a frame SAP.
Here, references must be in
same capsule.

RTFRAME_
CHECK_LOOSE

References must be in same
thread (but not the same
capsule).

RTFRAME_
CHECK_NONE

No checking is done. This is
compatible with ObjecTime
Developer pre-5.2.

49

RTMESSAGE_
PAYLOAD_SIZE

100 any scalar value >= 0 Reserve this many bytes in
RTMessage for small objects.
When data must be copied,
objects that are no larger than
this will use that space in the
message itself rather than
allocated on the heap.

RTREAL_INCLUDED 1 0 or 1 Should the class RTReal be
present? Target
environments that don't
support floating point data
types, or can't afford them,
should set it to 0.

RTTYPECHECK_
PROTOCOL

RTTYPECHECK_
WARN

RTTYPECHECK_
FAIL

What to do about protocols
which have signals of
incompatible data types? Set
error code, fail operation.

RTTYPECHECK_
WARN

Set error code, but proceed.

RTTYPECHECK_
DONT

No checking.

RTTYPECHECK_
SEND

RTTYPECHECK_
WARN

(see above) What to do about send, invoke
or reply when the signal or
type is incompatible with the
protocol?

RTTYPECHECK_
RECEIVE

RTTYPECHECK_
DONT or RTTYPE-
CHECK_WARN
(depending on the

(see above) Should signal be checked for
signal and type compatibility as
it is received?

RTQUALIFY_
NESTED

0 0 or 1 Some compilers have trouble
with the class nesting for
protocol backwards
compatibility and require the
class names to be fully
qualified.

RTUseBitFields 0 0 or 1 Some structures can be made
smaller through the use of
bit-fields. This space savings
often comes at the expense of
greater code bulk.

SUSPEND 0 0 The ability to 'suspend'
capsules is currently
unsupported. Leave at 0.

50

RTStateId_MaxSize 2 bytes (< 65536
states)

1 byte (<256 states), 2
bytes, or 4 bytes
(>=65536 states)

Maximum number of bytes
allocated to store each state
id.

RTStateId This is a typedef
calculated from the
value of
RTStateId_MaxSize.
Do not modify
directly, adjust
RTStateId_MaxSize
instead.

INLINE_CHAINS <blank> inline or <blank> Inlines state machine chains
for better performance at the
expense of potentially larger
executable memory size.

INLINE_METHODS <blank> inline or <blank> Inlines user-defined capsule
methods for better
performance at the expense
of potentially larger executable
memory size.

OBSERVABLE 1 if debugger, inet,
decoding and
encoding all are
enabled.

0 or 1 The ability to use the Target
Observability facilities.

EXTERNAL_LAYER 0 0 The "els" connection service
is not provided. Leave at 0.

51

5.2 Platform-specific Implementation

The implementation of the TargetRTS is contained in the $RTS_HOME/src directory. In this
directory, there is a subdirectory for each class. In general, within each subdirectory there
is one source file for each method in the class. Wherever possible, the name of the source
file matches the name of the method.

To port the TargetRTS to a new platform, it may be necessary to replace some of these
methods. Additionally, some of the methods that do not have default behaviors must be
provided. The target-specific source is placed in a subdirectory of
$RTS_HOME/src/target/<target_base>, where <target_base> is the target name without the
trailing ‘S’ or ‘T’. For the remainder of this section, the target
directory is referred to as $TARGET_SRC. For example, the target source directory for
<target> PSOS2T is $RTS_HOME/src/target/PSOS2. This directory provides an overlay to
the $RTS_HOME/src directory. When the TargetRTS loadbuild tools search for the source
for a method, it searches first in the $TARGET_SRC directory, then in $RTS_HOME/src.

Note: There is only a single source directory for all configurations of the TargetRTS for a
given platform. C++ preprocessor macros, such as USE_THREADS, may be used to
differentiate code for specific configurations.

There is a sample port in the $RTS_HOME/src/target/sample subdirectory to use as a
template for a port to a new target. These implementations can be incorporated into a
target implementation by copying the contents of these subdirectories into the
$TARGET_SRC directory. You may also want to search the other target subdirectories to
verify that the implementation of various TargetRTS classes resembles your target RTOS.
You can copy any required code to the new $TARGET_SRC directory.

The table below shows the classes and functions that must be provided in any port of the
TargetRTS. These are the minimum requirements for a new port, as most ports will include
changes to more classes than those listed.

Required TargetRTS Classes and Functions

RTTimespec::getclock()

RTThread::RTThread()

RTMutex (all 4 methods)

RTSyncObject (all 5 methods)

The remainder of this section discusses the most common required implementation code
required for a new target.

52

5.2.1 Method RTTimespec::getclock()

To implement the Timing service, the TargetRTS uses the time of day clock. The method
RTTimespec::getclock(), found in the file $TARGET_SRC/RTTimespec/getclock.cc, gets the
time of day from the operating system. There is no default implementation of this method
and it must be provided by the target. The format of this time of day is the POSIX-style
RTTimespec which contains two fields: the number of seconds and the number of
nanoseconds from some fixed point of time. This fixed point is usually the Universal Time
reference point of January 1, 1970. This does not need to be the case. However, to support
absolute time-outs, the TargetRTS assumes that the reference time is midnight of some day.

5.2.2 Constructor RTThread::RTThread()

To support multi-threading, the TargetRTS provides the class RTThread. The constructor
should create a stack and start a new thread using job->mainLoop() as its entry point.
There is no default implementation, the target implementation must provide the constructor
for this class in the file $TARGET_SRC/RTThread/ct.cc.

5.2.3 Class RTMutex

In the multi-threaded TargetRTS, shared resources are protected using mutexes
implemented by the class RTMutex. There is no default declaration or implementation. The
description of the RTMutex class should be placed in the file $TARGET_SRC/RTMutex.h.
There are four methods to RTMutex:

• RTMutex() - the constructor, in $TARGET_SRC/RTMutex/ct.cc, performs any
initialization of the mutex.

• ~RTMutex() - the destructor, in $TARGET_SRC/RTMutex/dt.cc, performs any clean
up when the mutex is no longer required.

• enter() - in $TARGET_SRC/RTMutex/enter.cc, locks the mutex if it is available, or
blocks the current thread until it is available.

• leave() - in $TARGET_SRC/RTMutex/leave.cc, frees the mutex and unblocks a
thread waiting on the enter().

5.2.4 Class RTSyncObject

An additional synchronization mechanism used by the TargetRTS is implemented by class
RTSyncObject. Many operating systems provide what is known as a ‘binary semaphore’. A
synchronization object is essentially the same thing. Many implementations of a
semaphore, however, do not provide a wait (or ‘pend’) with time-out. The lack of this time-
out feature requires the use of a more heavyweight implementation using a mutex and a
condition variable (POSIX condition variables have a ‘timedwait’ feature). A description of
each method can be found in the
$RTS_HOME/src/target/sample/RTSyncObject directory. There is no default declaration

53

or implementation. The description of the RTSyncObject should be in the file
$TARGET_SRC/RTSyncObject.h.

The implementation of five methods is required:

 RTSyncObject() - the constructor, in $TARGET_SRC/RTSyncObject/ct.cc, performs

any initialization required.

 ~RTSyncObject() - the destructor, in $TARGET_SRC/RTSyncObject/dt.cc, performs

any clean up given that the sync object is no longer required.

 signal() - in $TARGET_SRC/RTSyncObject/signal.cc. Signal this synchronization

object. If the owner is currently waiting, it should be readied. Otherwise the state of this

object should be such that the next call to wait or timedwait made by the owner will not

block. Signalling a second or subsequent time should have no effect.

 wait() - in $TARGET_SRC/RTSyncObject/wait.cc. Wait for this synchronization

object to be signalled. Only the owning thread is permitted to use this function. If the object

is in the 'signalled' state it should be reset to 'unsignalled' and the function should return

immediately. Otherwise the current thread should block until the object is signalled by

another thread. The object should always be left in the 'unsignalled' state.

 timedwait() - in $TARGET_SRC/RTSyncObject/timedwait.cc. Wait for this

synchronization object to be signalled. Only the owning thread is permitted to use this

function. If the object is in the 'signalled' state it should be reset to 'unsignalled' and the

function should return immediately. Otherwise the current thread should block until either

the object is signalled by another thread or the absolute expiry time arrives, whichever

occurs first. The object should always be left in the 'unsignalled' state.

5.2.5 main() function

In order for the execution of the TargetRTS to begin, code must be provided to call
RTMain::entryPoint(int argc, const char * const * argv), passing in the arguments to the
program. This code is placed in the file
$TARGET_SRC/MAIN/main.cc.

On many platforms, this is the code for the main() function, which simply passes argc and
argv directly. However, on other platforms, these parameters must be constructed. For
example, with Tornado, the arguments to the program are placed on the stack. An array of

54

strings containing the arguments must be explicitly created.

If the platform does not provide a mechanism for passing arguments to an executable,
default arguments for entryPoint() can be defined in the toolset. These arguments are
made available by the code generator, and can be used by overriding main() to call
RTMain::entryPoint(0, (const char * const *)0); instead.

5.2.6 Class RTMain

 RTMain::mainLine() indirectly calls a number of methods for target-specific initialization
and shutdown. These methods are as follows:

 targetStartup() - in file $TARGET_SRC/RTMain/targetStartup.cc, it initializes the target
in preparation for execution of the model. This includes things such as initializing
devices, for example, timers and consoles.

 targetShutdown() - in file $TARGET_SRC/RTMain/targetShutdown.cc, it generally
undoes the initialization that was performed in targetStartup(), for example, cleaning up

operating resources such as file descriptors.
 installHandlers() - in file $TARGET_SRC/RTMain/installHandlers.cc. In addition to target

start-up and shutdown, RTMain::mainLine() also calls this method to install Unix style
signal handlers, where available. These signal handlers are used by the single threaded
TargetRTS for timer and I/O interrupts. If the target OS does not implement signal
handlers, this method can be overridden by an empty method.

 installOneHandler() - in file $TARGET_SRC/RTMain/installOneHandler.cc. This method
is used by RTMain::installHandlers() to install the Unix style signal handlers. These
signal handlers are used by the single threaded TargetRTS for timer and I/O interrupts.
If the target OS does not implement signal handlers, this method can be overridden by
an empty method.

5.2.7 Method RTDiagStream::write()

The RTDiagStream class handles output of diagnostic messages to the standard error. If
your target does not support the fputs() function, you must supply a replacement for the
RTDiagStream::write() method in $TARGET_SRC/RTDiagStream/write.cc. This method
outputs a string to the standard error device.

5.2.8 Method RTDebuggerInput::nextChar()

The RTDebuggerInput class handles the input to the TargetRTS debugger. If your target
system does not support the fgetc() function, then you must supply a replacement for the
RTDebuggerInput::nextChar() method in $TARGET_SRC/RTDebuggerInput/nextChar.cc.
This method reads individual characters from the standard input device.

55

5.2.9 Class RTTcpSocket

The RTTcpSocket class provides an interface from the TargetRTS to the sockets library of
the target operating system. Many operating systems provide the familiar BSD sockets
interface. If this is the case then little modification is necessary. Typically, small changes to
data types are needed to satisfy the sockets interface. If code changes are required,
override the functions in RTinet.

Note: This class is not necessary if you do not plan to use Target Observability (Set the
OBSERVABLE macro to 0), and if your application does not require TCP/IP networking.

5.2.10 Class RTIOMonitor

The RTIOMonitor class is used to monitor activity on a set of TCP/IP sockets. This class
makes use of file descriptor sets and the select() function. There may be differences in the
way these sets are implemented on your target operating system. Only RTIOMonitor::wait
should need modification.

5.2.11 File main.cc

The file main.cc contains the main function for the TargetRTS and therefore the entire
application. Some operating systems already have a main function defined. This file must
be modified to take this into account. A typical solution is to create a root thread, which in
turn calls the entry point to the TargetRTS, RTMain::entryPoint().

5.3 Adding New Files to the TargetRTS

If you create a new method in a new file for an existing class, or you are adding a new class
to the TargetRTS, then you must add the new file names to a manifest file. This must be
done in order for the dependency calculations to include the new files and thus include
them into the TargetRTS.

5.3.1 The MANIFEST.cpp File

This file lists all the elements of the run-time system. There is one entry per line, and each
entry has two or more fields separated by white space. The first field is a directory name.
The second field is the base name of a file. By convention the directory name and file
name typically correspond to the class name and member name, respectively. The third
and subsequent fields, if present, give an expression that evaluates to zero when the
element should be excluded. Note that the expression is evaluated by Perl and so should
be of a form that it can handle.

If you have added a new generic (non-target specific) source file to the TargetRTS, you
must add an entry to the $RTS_HOME/src/MANIFEST.cpp file for this file. By convention,
the entry should be placed next to the other files for the specific class that you have

56

modified. If you are adding a whole class, then place the entries next to the super class if it
exists, or next to similar classes in the MANIFEST.cpp file.

If the added file is target specific, add an entry to $TARGET_SRC/TARGET-MANIFEST.cpp
instead (create this file if it doesn’t exist already).

In both cases, be sure to associate the new entry with the proper GROUP, see
MANIFEST.cpp for details.

5.3.2 Regenerating make Dependencies

If a file has been overridden in $TARGET_SRC directory or a new file has been added to
the MANIFEST.cpp, you must regenerate the dependencies in order for the modification to
be included in the new TargetRTS. This is done by removing the depend.mk file in the build
directory, $RTS_HOME/build-<config>. This will cause the dependencies to be recalculated
and a new depend.mk file to be created.

57

6. Modifying the Error Parser
When code generated by Model RealTime is compiled and linked various messages may be
produced by the compiler and linker. This includes errors, warnings and informational
messages. Model RealTime relies on functionality from Eclipse CDT for parsing these
messages. Refer to the CDT documentation for how to customize the error parser if you find
that messages produced by your compiler or linker are not correctly parsed.

58

7. Testing the TargetRTS Port
A port to a new platform requires testing the TargetRTS. There are some standard Model
RealTime models that are part of the installation and can be used to test the functionality
of the TargetRTS. These tests are not comprehensive but provide some basic level of
assurance that the port was successful.

Create the test models from the New Model Wizard. There is one very small HelloWorld
sample, and a slightly bigger TrafficLight sample that can be used.

Running applications generated from these sample models, validates the TargetRTS initialization
and startup, log service and console output and basic capsule functionality.

59

8. Tuning the TargetRTS
This chapter is organized as follows:
 Disabling TargetRTS Features for Performance
 Target Compiler Optimizations
 Target Operating System Optimizations
 Specific TargetRTS Performance Enhancements

8.1 Disabling TargetRTS Features for Performance

The TargetRTS can be modified to exclude many of its features to provide a minimum high
performance feature set. The section “Configuring and customizing the Services Library” in
the C Reference or C++ Reference describes how to create such a version of the
TargetRTS. The concepts of a “minimal TargetRTS” disable Target Observability, logging
service and the RTS debugger. The minimal TargetRTS should provide significant
performance gains over the fully featured version.

8.2 Target Compiler Optimizations

Most compilers provide optimizations at the object code generation stage that can produce
faster running code. In general, if your compiler supports such optimizations, they should
be used. Be sure to remove all debug options at the same time since they may cancel out
certain or all optimizations. Some optimizations may come at the cost of code size. If
application code size is a factor for your target then the benefit of optimization versus code
size will have to analyzed. Many compilers may have different levels of optimization, which
may produce differing degrees of code size and performance enhancements. It is hard to
predict the outcome of such optimizations in C or C++. Using a performance testing model
which measures the speed of certain operations may prove useful.

Note: Optimizations can cause errors in the running application that were not present
before optimizations were enabled. Be sure to fully test the TargetRTS after enabling any
optimizations.

60

8.3 Target Operating System Optimizations

The Target operating system may provide optimizations. For example, it may be possible
to link in a non-debug version of the OS with the application. These optimizations are
specific to each RTOS. Refer to the documentation for your specific RTOS.

8.4 Specific TargetRTS Performance Enhancements

In C++ one key area that can improve performance in the TargetRTS is in inter-thread
message passing. The TargetRTS make use of two synchronization mechanisms for much
of its message passing, namely, the RTMutex and RTSyncObject classes. Some operating
systems provide heavy-weight and light-weight synchronization mechanisms. The light-
weight version has less features but higher performance; whereas, the heavy-weight
version may have more features but poorer performance. Your choice of implementation
for the RTMutex and RTSyncObject may affect the performance of inter-thread message
passing, so be sure to investigate and determine the lightest-weight mechanism necessary
to satisfy the requirements of these classes.

61

9. Common Problems and Pitfalls
This chapter is organized as follows:

 Overview
 Problems and Pitfalls with Target Tool chains
 Problems and Pitfalls with TargetRTS/RTOS Interaction
 Problems and Pitfalls with Target TCP/IP Interfaces

9.1 Overview

This chapter contains information on common problems and pitfalls that we have
encountered with previous ports. The TargetRTS is supported on a number of platforms
and has been verified on each of these platforms. In general, the problems and pitfalls
encountered are mainly due to RTOS and toolchain differences from those verified in the
standard platforms. Other problems arise from lack of support for certain features required
by the TargetRTS and thus require a custom workaround to satisfy the TargetRTS.

The target-specific source is placed in a subdirectory of
$RTS_HOME/src/target/<target_base>, where <target_base> is defined by
$target_base variable in the file setup.pl file (see Creating a Setup Script (setup.pl)). The
target name often appears with the trailing ‘S’ or ‘T’. The name defaults to the target name
without the "S" or "T" if the variable $target_base is not defined in the setup.pl file.

9.2 Problems and Pitfalls with Target Toolchains

This section describes possible problems with the tools used to build the TargetRTS and the
model.

9.2.1 Compiler Optimizations

Compiler optimizations, in general, either help speed up the application, or make the
footprint of the executable smaller. Some optimizations can unfortunately cause errors in
the application. One such problem occurs when the compiler optimizes references to a
memory location that is not modified by the application. It assumes that because the
application does not modify the contents of the address, it is never modified. In a multi-
threaded environment, some compiler optimizations might not yield the desired result, so
be cautious.

Optimizations vary from compiler to compiler, so refer to the documentation for your
specific toolchain. Review the optimizations that are available and be aware that some may
cause errors in the application. Running a set of test models is a good way to ensure the
optimizations have not broken the TargetRTS.

Make sure the test models you use exercise each of the target OS primitives used by the

62

TargetRTS.

9.2.2 Linker Configuration File

When linking an application to an embedded target, there is usually some sort of linker
configuration file that defines where in memory each section of the application will go.
Many default linker configuration files are included without the user ’s knowledge and may
cause strange linking errors as applications grow larger. Be sure to define your own linker
configuration file appropriate for your target.

9.2.3 System Include Files

The structure and content of include files can be a challenge when moving to a new
toolchain. In the TargetRTS an attempt is made to isolate the nuances of include files for
each RTOS into a few specific include files that can be used by all the target-specific
code. In general, all RTOS-specific definitions should be combined into a file called
RT<os_name>.h in the $TARGET_SRC directory in the C++ TargetRTS. This way all
include files needed to access OS functions can be found in this one file. In the C++
TargetRTS, RTtcp.h TARGET_SRC directory (C++). This file should contain all the
necessary include files required for TCP/IP functions. Other, more specific, header files
may be required to isolate unique interfaces for your RTOS. These may be added to the
$TARGET_SRC directory as needed, and are typically prefixed by “RT” in the C++
version.

9.3 Problems and Pitfalls with TargetRTS/RTOS Interaction

This section describes the possible problems between the operating system and the
system calls that are part of the TargetRTS.

9.3.1 Return Codes for POSIX Function Calls

Even though POSIX is a standard, there are still some discrepancies in the
implementation of the interface. Some implementations of the POSIX function calls
return an error code, while others return -1 and store the result in global variable errno.
Check your specific RTOS to see how error conditions are reported.

9.3.2 Thread Creation

Thread creation has caused problems in the past. One specific problem is the lack of free
space on the heap to allocate the stack for the new thread. This causes a system crash
with no error message or exception raised. Other potential pitfalls arise with thread
priorities. Do not alter the relative priorities of the C TargetRTS or C++ TargetRTS threads
(main thread), timer thread and debugger thread). Incorrect priorities may effect the

63

functioning of timers, the debugger or even the Model RealTime application.

9.3.3 Real-time Clock

C++ Most RTOSes provide a function to retrieve the current system time. Typically it
may return clock ticks, milliseconds or even nanoseconds. In the C++ TargetRTS, a
conversion from the RTOS time to RTTimespec is required in order to satisfy the
requirements of the RTTimespec::getclock() function. Some RTOSes may provide a macro
or function to resolve the number of ticks per second and thus make conversion to
RTTimespec straightforward. Others may require hard-coded conversion based on the
known tick rate for the RTOS. If this rate is later changed then the conversion will fail. This
results in incorrect behavior for all timers in the Model RealTime model.

In the C++ TargetRTS, when changing the system clock, note that if the time returned by
the RTTimespec::getclock() function is affected by changes in the system clock, the
function call that adjusts the time must be located between calls to the Timing::Base
methods adjustTimeBegin() and adjustTimeEnd(). If, however, system clock changes do
not affect the RTTimespec::getclock() function, do not use the Timing::Base methods
adjustTimeBegin() and adjustTimeEnd(). Timers will fail in this case and cause unwanted
behavior in your Model RealTime application.

For example:

void AdjustTimeActor::setclock(constRTTimespec & new_time)

{

RTTimespec old_time; RTTimespec delta;

timer.adjustTimeBegin(); // stop Rose RealTime timer service
sys_getclock(old_time); // an OS-specific function sys_setclock(new_time); // an OS-

specific function

delta = new_time;
delta -= old_timer;

timer.adjustTimeEnd(delta); // resume Rose RealTime timer service

}

9.3.4 Signal Handlers

Many RTOSs do not use signals that are typical of UNIX operating systems. If your
RTOS does not provide signals, be sure to override the C++ TargetRTS code in

C++ RTMain::installHandlers() and RTMain::installOneHandler().

64

9.3.5 RTOS Supplies main() Function

The TargetRTS assumes that it defines the main() function for an application. Some RTOSs
may provide their own main() function, which causes a duplicate reference error at link time.
If this is the case for your RTOS, you have to modify the code in
$TARGET_SRC/MAIN/main.c or $TARGET_SRC/MAIN/main.cc. Typically, you have to
start a thread that contains the main() function for the Model RealTime application. The
documentation for the RTOS will describe how to start your application in this manner.

9.3.6 Default Command Line Arguments

Embedded targets do not usually have access to command line arguments, so RTOSs
rarely provide a way to pass command line arguments to a running application. If your
RTOS does not support command line arguments, you can use the default argument
mechanism in the toolset. This feature lets you enter a set of default arguments for each
component, and these arguments will appear in the generated code.

These arguments can be specified in Model RealTime using the transformation
configuration property called Default Arguments.

Note: These arguments will appear in the generated code verbatim, so use quotes
around, and commas between, your arguments to avoid compilation errors.

You will also have to create a slightly modified main() function and put it into
$TARGET_SRC/MAIN/main.c or $TARGET_SRC/MAIN/main.cc. The modification needed
is that instead of calling RTMain_entryPoint() or RTMain::entryPoint() with the arguments
argc and argv, like it is done by the default implementat ion in
$RTS_HOME/src/MAIN/main.cc:

int main(int argc, const char * const * argv) // Standard main

{

return RTMain::entryPoint(argc, argv);

}

...you should ins tead call RTMain::entryPoint() like this:

int main() // This main takes no arguments

{

return RTMain::entryPoint(0, (const char * const *)0);

}

This will cause the TargetRTS to use the default arguments instead. Please note that
default arguments behave just like "real" command line arguments; the first argument,
RTMain_argv()[0] or RTMain::argStrings()[0] is the name of the program. Your arguments
are available in position [1] and onwards.

65

9.3.7 Exiting Application

In the C++ TargetRTS, the RTStdio_panic() or RTDiag::panic() function requires a way to
terminate the application. This is generally achieved by exiting the application. If your
RTOS does not support the exit() function, you have to override the code in
$TARGET_SRC/Main/exit.c or $TARGET_SRC/RTDiag/panic.cc to use the exit function
specific to your RTOS.

9.4 Problems and Pitfalls with Target TCP/IP Interfaces

This section describes the possible problems with OS specific TCP/IP interfaces. Your
model can still run without TCP/IP support in the TargetRTS, however Target Observability
(for example, observing a running model using the Model Debugger) will be disabled.

9.4.1 gethostbyname() reentrancy

A problem was found on some UNIX targets when trying to use the gethostbyname()
function in a multi-threaded application. The call was replaced with a call to the
gethostbyname_r() function, which is re-entrant and thread safe. If this is the case for your
target OS, change the code for RTinet_lookup() in $TARGET_SRC/Inet/lookup.c or
$TARGET_SRC/RTinet/lookup.cc in the C++ TargetRTS.

66

10. TargetRTS Porting Example
 Overview
 Choosing the Configuration Name
 Create Setup Script
 Create makefiles
 TargetRTS Configuration Definitions
 Code Changes to TargetRTS Classes
 Building the New TargetRTS

10.1Overview

This chapter provides an example of porting the TargetRTS for C++ to a new platform.
This is an example port rather than customization of an existing port. See the C++
Reference for a customization example. This porting example should help implement the
information presented in previous sections. The target platform for this example is the
Tornado 2 real-time operating system using the Cygnus C++ Compiler version 2.7.2-
960126 for Motorola PowerPC microprocessors.

10.2Choosing the Configuration Name

The configuration name is an important identifier of the TargetRTS. It identifies the
operating system, hardware architecture and (cross) compiler. In this example, the
operating system is Tornado 2. The hardware architecture is Motorola PowerPC (ppc). The
compiler is the Cygnus C++ Compiler version 2.7.2-960126. For this example we will only
consider the multi-threaded version of the TargetRTS since this provides the most
interesting porting challenges. The resulting configuration name is as follows:

<target> = TORNADO2T

<libset> = ppc-cygnus-2.7.2->960126

<config> = <target>.<libset>= TORNADO2T.ppc-cygnus-2.7.2-960126

10.3Create Setup Script

The setup script is a Perl script that defines environment variables for the compilation of
the TargetRTS:

if($OS_HOME = $ENV{'OS_HOME'})
{

67

$os = $ENV{'OS'} || 'default';

if($os eq 'Windows_NT')
{

$wind_base = $ENV{'WIND_BASE'};
$wind_host_type = 'x86-win32';
$ENV{'PATH'} = "$wind_base/host/$wind_host_type/bin;$ENV{'PATH'}";
}
else
{

$RSA_RT_HOME/rsa_rt/C++/TargetRTS = $ENV{'ROSERT_HOME'};
chomp($host =
`$RSA_RT_HOME/rsa_rt/C++/TargetRTS/bin/machineType`);

$wind_base = "$OS_HOME/wrs/tornado-2.0";
if($host eq 'sun5')
{

$wind_host_type = 'sun4-solaris2';
}

elsif($host eq 'hpux10')
{

$wind_host_type = 'parisc-hpux10';
}

$ENV{'PATH'} = "$wind_base/host/$wind_host_type/bin:$ENV{'PATH'}";
$ENV{'WIND_BASE'} = "$wind_base";

}

$ENV{'GCC_EXEC_PREFIX'} ="$wind_base/host/$wind_host_type/lib/gcc-lib/";
$ENV{'VXWORKS_HOME'} = "$wind_base/target";
$ENV{'VX_BSP_BASE'} = "$wind_base/target";
$ENV{'VX_HSP_BASE'} = "$wind_base/target";
$ENV{'VX_VW_BASE'} = "$wind_base/target";
$ENV{'WIND_HOST_TYPE'} = "$wind_host_type";
}

$preprocessor = "ccppc -DPRAGMA -E -P >MANIFEST.i";
$target_base = 'TORNADO1';
$supported = 'Yes';

68

The setup script must contain the mandatory definitions for the $preprocessor and
$supported flags. The toolchain environment variables are usually required for cross
compiler tools, since it is not typically part of a user ’s command path, and the
environment variable definitions are probably not already defined in most users’
environments.

Note: The $target_base variable is set to TORNADO1. This means that the
TORNADO2T target uses the same code base for the TargetRTS classes as the
TORNADO1 target.

10.4Create makefiles

The next step in porting the TargetRTS is to create various makefiles needed to build the
TargetRTS for the platform and to build Model RealTime models on this new TargetRTS
and platform.

10.4.1 Libset makefile

The libset makefile is used to make specific definitions for the compiler. The command line
interface for C and C++ compilers can differ significantly, particularly for cross-compilers
such as the Cygnus C or C++ compiler. It is in this file that we make definitions for
command line options for the compiler and linker and override other definitions made in
$RTS_HOME/libset/default.mk. See Default makefile for details. In any port of the
TargetRTS, there are certain commands required in the toolchain in order to support the
building of the TargetRTS. The table below illustrates these required commands.

The library archive command (ar) for the Cygnus toolchain requires the use of a script to
work the way the TargetRTS build requires. The libset makefile must define the VENDOR
macro that instructs the error parser which type of compiler is being used. The error parser
uses this information to decode error messages returned by the compiler to a format
compatible with the Model RealTime toolset.

Another important role of the libset makefile is the definition of command line options.
The table illustrates the typical subset of command line options.

Option
GNUcc on
Solaris Cygnus

LIBSETCCFLAGS -DPRAGMA -ansi -nostdinc -DCPU=PPC603

LIBSETCCEXTRA -O4 -finline -finline-functions -Wall

69

The compiler options may vary greatly from one platform to another, but must support
some basic features. Read the compiler documentation carefully and review some of the
libset.mk files for other TargetRTS platforms for guidance. A list of required features
follows:

 to compile source files into object files only (that is, not to proceed to the link
phase), typically the ‘-c’ option
 to place the object file in a desired directory and file name, typically the ‘-o’
option
 to link and place the executable in a desired directory and file name, typically
the ‘-o’ option for the link phase
 to turn on debugging information in the compiled code, typically the ‘-g’ option
 to specify the pathname of include files, typically the ‘-I’ option
 to specify the pathname of libraries, typically the ‘-L’ option
 to specify the libraries to link, typically the ‘-l’ (ell) option
 to turn on code optimization, typically ‘-O’ option and sub-options

C++ The contents of the C++ version of the libset makefile,
$RTS_HOME/libset/ppc-cygnus-2.7.2-960126/libset.mk is as follows:

VENDOR = cygnus
AR_CMD = $(PERL) $(RTS_HOME)/tools/ar.pl -create=arppc,rc - ranlib =
ranlibppc
CC = ccppc
LD = $(PERL) "$(RTS_HOME)/target/$(TARGET)/link.pl"
ARCH=ppc
RANLIB = ranlibppc
LIBSETCCFLAGS = -DPRAGMA -ansi -nostdinc -DCPU=PPC603
LIBSETCCEXTRA = -O4 -finline -finline-functions -Wall
SHLIBS =
ALL_OBJS_LIST = %$(ALL_OBJS_LISTFILE)

10.4.2 Target makefile

The target makefile is used to make definitions specific to the target operating system and
the TargetRTS configuration. These are usually specific command line options for the
compiler and linker to define such things as include directories for the target OS and
libraries and their pathnames. These definitions must be common to all TORNADO2T
targets, regardless of libsets.

C++ The contents of the target C++ makefile,
$RTS_HOME/target/TORNADO2T/target.mk, is as follows:

TARGETCCFLAGS = $(INCLUDE_TAG)$(VXWORKS_HOME)/h

70

10.4.3 Configuration makefile

The configuration makefile is used to make definitions required by the operating system
and compilation environment together. In this particular case, the configuration makefile,
$RTS_HOME/config/TORNADO2T.ppc-cygnus-2.7.2-960126/config.mk, is empty
because there is no need for any definitions specific to the compiler and operating system
combination.

10.5TargetRTS Configuration Definitions

The default configuration definitions for the TargetRTS are found in the include file
$RTS_HOME/include/RTConfig.h. The definitions in this file can be overridden by
$RTS_HOME/target/TORNADO2T/RTTarget.h and possibly
$RTS_HOME/libset/ppc-cygnus-2.7.2-960126/RTLibSet.h.

These definitions are used to enable and disable various features in the TargetRTS. By
default almost all of the TargetRTS features are enabled (for example, Target
Observability). The porting effort may be made easier if some of these features are
disabled. See section “TargetRTS Customization Example” in the C++ Reference for
instructions on how to build a minimal TargetRTS.

C++ The content of the C++ version of the file
$RTS_HOME/target/VRTX4T/RTTarget.h is as follows:

#ifndef RTTarget_h__
#define RTTarget_h__ included
#define TARGET_TORNADO 1

#define USE_THREADS 1
#define PERFORM_CTOR_DTOR 0
#define DEFAULT_DEBUG_PRIORITY 60
#define DEFAULT_MAIN_PRIORITY 75
#define DEFAULT_TIMER_PRIORITY 70

#endif // __RTTarget_h__

There is no need for the file $RTS_HOME/libset/ppc-cygnus-2.7.2-960126/RTLibSet.h
Since no compiler-specific compile-time features need to be modified.

RTnew.h may be necessary in libset/- if <new> is not available.

$RTS_HOME/libset/ppc-cygnus-2.7.2-960126/RTRTnew.h is as follows:

#include <new.h>

71

10.6Code Changes to TargetRTS Classes

Most ports to new targets require some minor changes to the TargetRTS code. These
changes typically apply to operating system features for thread (task) creation and
destruction, mutual exclusion and synchronization and time services. See chapter
Port ing the TargetRTS for C++ for a description of TargetRTS classes that might
require changes.

The required changes to the TargetRTS source for TORNADO2 and the Cygnus compiler
are, for C++, located in the $RTS_HOME/src/target/TORNADO1 directory. See the
discussion for the setup script above for an explanation of why the directory is called
TORNADO101 for C, rather than TORNADO2. For the remainder of this section, this
directory is referred to as $TARGET_SRC.

The files in the $TARGET_SRC directory each override their counterpart in
$RTS_HOME/src. To override a definition from the source directory, a new subdirectory
should be created in $TARGET_SRC.

C++ For example, for C++, the new definition for RTTimespec::getclock() requires a
subdirectory $TARGET_SRC/RTTimespec. The new file containing
RTTimespec::getclock() would be $TARGET_SRC/RTTimespec/getclock.cc.

The required changes to the TargetRTS are too large to include in this document. Table
12 contain a summary of the required changes to each file.

Class File Change

MAIN main.cc main already defined by RTOS, use
rtsMain with nonstandard argument
handling instead.

RTDiag panic.cc Modified version since there is no exit()
method

RTMain targetStartup.cc Modify main thread priority to that
specified in the toolset

RTMutex

(required)

ct.cc
dt.cc
enter.cc
leave.cc

Required implementation using Tornado
specific calls to semMCreate, semDelete,
semTake and semGive.

72

RTSyncObject (required) ct.cc dt.cc
signal.cc

timedwait.cc
wait.cc

Required implementation using Tornado
specific calls to semBCreate, semDelete,
semGive and semTake.

RTThread (required) ct.cc Required implementation using Tornado
specific calls to taskSpawn and
taskSuspend, etc.

RTTimespec (required) getclock.cc Required implementation using Tornado
specific call to clock_gettime.

RTinet lookup.cc Modified version, uses hostGetByName
instead of gethostbyname.

73

10.7Building the New TargetRTS

After the setup script, makefiles, and source are complete, the TargetRTS is ready to be
built. To build the TargetRTS for the Tornado 2 Cygnus target, type the following in the
$RTS_HOME/src directory:

make TORNADO2T.ppc-cygnus-2.7.2-960126

This will create the directory $RTS_HOME/build-TORNADO2T.ppc-cygnus-2.7.2-960126
which will contain the dependency file and object files for the TargetRTS. If the build
completes successfully the resulting Model RealTime libraries will be placed in the
$RTS_HOME/lib/TORNADO2T.ppc-cygnus-2.7.2-960126 directory.

11. Known problems / Issues

 Re-size of the 2nd TargetRTS wizard page on Linux will overlap the Browse target
heading label and Path text box, which results in that the Browse target heading label is
not visible clearly

 Groups on right hand side does not have the same length on TargetRTS wizard
Customize target page, hence particular wizard page looks like not aligned the groups to
same length

 On Windows there will be a conflict between Cygwin and MinGW paths, Developer
required to use any one of them by setting particular path to PATH environment variable(i.e.
Not to set both simultaneously to PATH environment variable)

74

	1. Using the TargetRTS Wizard
	1.1 Overview of the TargetRTS Wizard
	1.2 Understanding the TargetRTS
	1.3 Maintaining TargetRTS Libraries using the TargetRTS Wizard
	1.3.1 Managing Your TargetRTS Configurations

	1.4 Duplicating a Configuration
	1.5 NoRTOS Target Base
	1.6 Editing a Configuration
	1.7 Understanding the makefiles
	1.8 Editing the Target
	1.9 Editing the Libset
	1.10 Modifying a Configuration
	1.11 Building Configurations
	1.12 Deleting Configurations

	2. Introducing the TargetRTS
	2.1 Overview
	2.2 Other Resources

	3. Before Starting a Port
	3.1 OS Knowledge and Experience
	3.2 Toolchain Functionality
	3.3 OS Capabilities
	3.4 Simple non-RT Program on Target
	3.5 TCP/IP Functionality
	3.6 Floating Point Operations
	3.7 Standard Input/Output Functionality
	3.8 Debugging
	3.9 Training
	3.10 Support
	3.11 What to do Before Calling Customer Support

	4. Porting the TargetRTS
	4.1 Overview
	4.2 Phases of a Port
	4.3 Choose a Configuration Name
	4.4 Target Name
	4.5 Libset Name
	4.6 Building RT Applications for Targets without Operating Systems
	4.7 Benefits of Using a NoRTOS Configuration
	4.8 Using a NoRTOS Configuration
	4.9 Verification
	4.10 Creating a Setup Script (setup.pl)
	4.11 TargetRTS makefiles
	4.12 Default makefile
	4.13 Target makefile
	4.14 Libset makefile
	4.15 Config makefile

	5. Porting the TargetRTS for C++
	5.1 Configuring the TargetRTS
	5.2 Platform-specific Implementation
	5.2.1 Method RTTimespec::getclock()
	5.2.2 Constructor RTThread::RTThread()
	5.2.3 Class RTMutex
	5.2.4 Class RTSyncObject
	5.2.5 main() function
	5.2.6 Class RTMain
	5.2.7 Method RTDiagStream::write()
	5.2.8 Method RTDebuggerInput::nextChar()
	5.2.9 Class RTTcpSocket
	5.2.10 Class RTIOMonitor
	5.2.11 File main.cc

	5.3 Adding New Files to the TargetRTS
	5.3.1 The MANIFEST.cpp File
	5.3.2 Regenerating make Dependencies

	6. Modifying the Error Parser
	7. Testing the TargetRTS Port
	8. Tuning the TargetRTS
	8.1 Disabling TargetRTS Features for Performance
	8.2 Target Compiler Optimizations
	8.3 Target Operating System Optimizations
	8.4 Specific TargetRTS Performance Enhancements

	9. Common Problems and Pitfalls
	9.1 Overview
	9.2 Problems and Pitfalls with Target Toolchains
	9.2.1 Compiler Optimizations
	9.2.2 Linker Configuration File
	9.2.3 System Include Files

	9.3 Problems and Pitfalls with TargetRTS/RTOS Interaction
	9.3.1 Return Codes for POSIX Function Calls
	9.3.2 Thread Creation
	9.3.3 Real-time Clock
	9.3.4 Signal Handlers
	9.3.5 RTOS Supplies main() Function
	9.3.6 Default Command Line Arguments
	9.3.7 Exiting Application

	9.4 Problems and Pitfalls with Target TCP/IP Interfaces
	9.4.1 gethostbyname() reentrancy

	10. TargetRTS Porting Example
	10.1 Overview
	10.2 Choosing the Configuration Name
	10.3 Create Setup Script
	10.4 Create makefiles
	10.4.1 Libset makefile
	10.4.2 Target makefile
	10.4.3 Configuration makefile

	10.5 TargetRTS Configuration Definitions
	10.6 Code Changes to TargetRTS Classes
	10.7 Building the New TargetRTS

	11. Known problems / Issues

